Stochastic Optimization IDA PhD course 2011ht

Stefanie Kosuch

PostDok at TCSLab <www.kosuch.eu/stefanie/>

2. Lecture: Uncertainties in objective 06. October 2011

- [Expected value objective function](#page-11-0)
- [Probability of shortfall](#page-55-0)
- **[Minimize Variance](#page-99-0)**
- [Value at risk](#page-118-0)

- [Expected value objective function](#page-11-0)
- [Probability of shortfall](#page-55-0)
- **[Minimize Variance](#page-99-0)**
- [Value at risk](#page-118-0)

2 [One more SP example](#page-141-0)

[Machine Scheduling](#page-142-0)

- [Expected value objective function](#page-11-0)
- [Probability of shortfall](#page-55-0)
- **[Minimize Variance](#page-99-0)**
- [Value at risk](#page-118-0)

2 [One more SP example](#page-141-0)

[Machine Scheduling](#page-142-0)

3 [A bit of History](#page-182-0)

Outline

1 [Randomness occurs in the objective function](#page-4-0)

- [Expected value objective function](#page-11-0)
- [Probability of shortfall](#page-55-0)
- **[Minimize Variance](#page-99-0)**
- [Value at risk](#page-118-0)

2 [One more SP example](#page-141-0) **[Machine Scheduling](#page-142-0)**

3 [A bit of History](#page-182-0)

$$
\min_{x \in X} f(x)
$$

s.t. $g(x) \le 0$

$$
\min_{x \in X} f(x) \qquad \min_{x \in X} f(x, \chi)
$$
\n
$$
\text{s.t.} \quad g(x) \le 0 \qquad \longrightarrow \qquad \text{s.t.} \quad g(x, \chi) \le 0
$$

$$
\min_{x \in X} f(x) \qquad \min_{x \in X} f(x, \chi)
$$
\n
$$
\text{s.t.} \quad g(x) \le 0 \qquad \longrightarrow \qquad \text{s.t.} \quad g(x \le 0)
$$

$$
\min_{x \in X} f(x) \qquad \min_{x \in X} f(x) \leq 0 \qquad \longrightarrow \qquad \text{s.t.} \quad g(x, \chi) \leq 0
$$

Deterministic Opt. Model \rightarrow Stochastic Programming Model

$$
\min_{x \in X} f(x) \qquad \min_{x \in X} f(x, \chi)
$$
\n
$$
\text{s.t.} \quad g(x) \le 0 \qquad \longrightarrow \qquad \text{s.t.} \quad g(x, \chi) \le 0
$$

 $\chi \in \Omega \subseteq \mathbb{R}^s$: random vector

Deterministic Opt. Model \rightarrow Stochastic Programming Model

$$
\min_{x \in X} f(x) \qquad \min_{x \in X} f(x, \chi)
$$
\n
$$
\text{s.t.} \quad g(x) \le 0 \qquad \longrightarrow \qquad \text{s.t.} \quad g(x, \chi) \le 0
$$

 $\chi \in \Omega \subseteq \mathbb{R}^s$: vector with random variable as entries

L Randomness occurs in the objective function

Expected value objective function

Outline

1 [Randomness occurs in the objective function](#page-4-0)

- [Expected value objective function](#page-11-0)
- [Probability of shortfall](#page-55-0)
- **[Minimize Variance](#page-99-0)**
- [Value at risk](#page-118-0)

2 [One more SP example](#page-141-0) **[Machine Scheduling](#page-142-0)**

3 [A bit of History](#page-182-0)

Expected value objective function

Minimize an expected value function

Expected value objective function

Minimize an expected value function

min $\mathbb{E}[f(x, \chi)]$ s.t. $g(x) \leq 0$

Expected value objective function

Minimize an expected value function

min $\mathbb{E}[f(x, \chi)]$ s.t. $g(x) \leq 0$

Examples

 \blacksquare Expected cost / Expected gain

Expected value objective function

Minimize an expected value function

min $\mathbb{E}[f(x, \chi)]$ s.t. $g(x) \leq 0$

- \blacksquare Expected cost / Expected gain
- **Expected machine working time**

Expected value objective function

Minimize an expected value function

min $\mathbb{E}[f(x, \chi)]$ s.t. $g(x) \leq 0$

- \blacksquare Expected cost / Expected gain
- Expected machine working time
- **Expected transportation time**

Expected value objective function

Minimize an expected value function

min $\mathbb{E}[f(x, \chi)]$ s.t. $g(x) \leq 0$

- \blacksquare Expected cost / Expected gain
- Expected machine working time
- **Expected transportation time**
- **Expected customer waiting times**

Expected value objective function

Minimize an expected value function

min $\mathbb{E}[f(x, \chi)]$ s.t. $g(x) \leq 0$

- \blacksquare Expected cost / Expected gain
- Expected machine working time
- **Expected transportation time**
- **Expected customer waiting times**
- Expected damage on target

Expected value objective function

Advantages

Good result "on average"

Expected value objective function

- Good result "on average"
- Objective function can often be reformulated deterministically

Expected value objective function

- Good result "on average"
- Objective function can often be reformulated deterministically
- **Convex objective if** $f(\cdot, \chi)$ **is convex (for all possible** χ **)**

Expected value objective function

- Good result "on average"
- Objective function can often be reformulated deterministically
- **Convex objective if** $f(\cdot, \chi)$ **is convex (for all possible** χ **)**
- **Lower bound using Jensen's inequality:**

Expected value objective function

- Good result "on average"
- Objective function can often be reformulated deterministically
- **Convex objective if** $f(\cdot, \chi)$ **is convex (for all possible** χ **)**
- **Lower bound using Jensen's inequality:**

Expected value objective function

Advantages

- Good result "on average"
- Objective function can often be reformulated deterministically
- **Convex objective if** $f(\cdot, \chi)$ **is convex (for all possible** χ **)**
- **Lower bound using Jensen's inequality:**

Theorem (Jensen, 1906)

Let f be a convex function and X a random variable. Then

 $\mathbb{E}[f(X)] \geq f(\mathbb{E}[X])$

Expected value objective function

Advantages

- Good result "on average"
- Objective function can often be reformulated deterministically
- **Convex objective if** $f(\cdot, \chi)$ **is convex (for all possible** χ **)**
- **Lower bound using Jensen's inequality:**

Theorem (Jensen, 1906)

Let f be a convex function and X a random variable. Then

```
\mathbb{E}[f(X)] \geq f(\mathbb{E}[X])
```
Disadvantages

■ We might encounter very "bad cases" ("Risk")

Expected value objective function

Advantages

- Good result "on average"
- Objective function can often be reformulated deterministically
- **Convex objective if** $f(\cdot, \chi)$ **is convex (for all possible** χ **)**
- **Lower bound using Jensen's inequality:**

Theorem (Jensen, 1906)

Let f be a convex function and X a random variable. Then

```
\mathbb{E}[f(X)] \geq f(\mathbb{E}[X])
```
Disadvantages

- We might encounter very "bad cases" ("Risk")
- Expectation can only be computed as multidimensional integral

Randomness occurs in the objective function

Expected value objective function

Linear Programming Problem

Randomness occurs in the objective function

Expected value objective function

Linear Programming Problem

$$
\min_{\substack{x \in \mathbb{R}^n \\ x \ge 0}} \mathbb{E} [c(\chi)^T x]
$$

s.t. $Ax \le b$

Randomness occurs in the objective function

Expected value objective function

Linear Programming Problem

$$
\min_{\substack{x \in \mathbb{R}^n \\ x \ge 0}} \mathbb{E} [c(\chi)^T x]
$$

s.t. $Ax \le b$

$$
\chi \in \mathbb{R}^s
$$
: random vector

Randomness occurs in the objective function

Expected value objective function

Linear Programming Problem

$$
\min_{\substack{x \in \mathbb{R}^n \\ x \ge 0}} \mathbb{E}[c(\chi)]^T x
$$

s.t. $Ax \le b$

$$
\chi \in \mathbb{R}^s
$$
: random vector

Expected value objective function

Linear Programming Problem

Stochastic Programming Problem

$$
\min_{\substack{x \in \mathbb{R}^n \\ x \ge 0}} \mathbb{E}[c(\chi)]^T x
$$

s.t. $Ax \le b$

$$
\chi \in \mathbb{R}^s \colon \text{random vector}
$$

Deterministically Reformulated Programming Problem

Example 2 Persity

 L Expected value objective function

Linear Programming Problem

Stochastic Programming Problem

$$
\min_{\substack{x \in \mathbb{R}^n \\ x \ge 0}} \mathbb{E}[c(\chi)]^T x
$$

s.t. $Ax \le b$

 $\chi \in \mathbb{R}^s$: random vector

Deterministically Reformulated Programming Problem

min
 $x \in \mathbb{R}^n$
 $x \ge 0$ $\mu^\mathcal{T}$ x s.t. $Ax < b$

Randomness occurs in the objective function

 L Expected value objective function

Linear Programming Problem

Stochastic Programming Problem

$$
\min_{\substack{x \in \mathbb{R}^n \\ x \ge 0}} \mathbb{E} [c(\chi)]^T x
$$

s.t. $Ax \le b$

 $\chi \in \mathbb{R}^s$: random vector

Deterministically Reformulated Programming Problem

$$
\min_{\substack{x \in \mathbb{R}^n \\ x \ge 0}} \mu^T x
$$

s.t. $Ax \le b$

 $\mu\in\mathbb{R}^n$: (deterministic) vector of means

<u>example</u> and versity

Randomness occurs in the objective function

Expected value objective function

Discrete Finite Distribution

Expected value objective function

Discrete Finite Distribution

Expected value objective function

Discrete Finite Distribution

Expected value objective function

Discrete Finite Distribution

 $\chi \in \mathbb{R}^s$: random vector

Deterministically Reformulated Programming Problem

Expected value objective function

Discrete Finite Distribution

Deterministically Reformulated Programming Problem

$$
\chi^1,\ldots,\chi^K\in\mathbb{R}^s\colon\text{scenarios}
$$

Expected value objective function

Discrete Finite Distribution

 $\chi \in \mathbb{R}^s$: random vector

Deterministically Reformulated Programming Problem

$$
\begin{array}{l}\chi^1,\ldots,\chi^K\in\mathbb{R}^s\text{: scenarios} \\ \mathbb{P}\{\chi=\chi^k\}:=\rho^k\text{: probabilities}\end{array}
$$

 L Expected value objective function

Discrete Finite Distribution

$$
\text{s.t.} \quad g(x) \leq 0
$$

 $\chi \in \mathbb{R}^s$: random vector

Deterministically Reformulated Programming Problem

$$
\min_{x \in X} \sum_{k=1}^{K} p^{k} f(x, \chi^{k})
$$
\ns.t.

\n
$$
g(x) \leq 0
$$

 $\chi^1,\ldots,\chi^K\in{\rm I\!R}^s$: scenarios $\mathbb{P}\{\chi=\chi^k\}:=\rho^k$: probabilities

Randomness occurs in the objective function

Expected value objective function

General problem with discrete finite distributions

Randomness occurs in the objective function

Expected value objective function

General problem with discrete finite distributions

Exponential number of scenarios

 L Expected value objective function

General problem with discrete finite distributions

Exponential number of scenarios

Assume:

Discretely distributed random variables

 $L_{\text{Expected value objective function}}$

General problem with discrete finite distributions

Exponential number of scenarios

Assume:

- **Discretely distributed random variables**
- **n** Independently distributed random variables

 L Expected value objective function

General problem with discrete finite distributions

Exponential number of scenarios

Assume:

- **Discretely distributed random variables**
- \blacksquare Independently distributed random variables
- \blacksquare (Linear) Dependence: # dec. variables \leftrightarrow # rand. variables

 L Expected value objective function

General problem with discrete finite distributions

Exponential number of scenarios

Assume:

- **Discretely distributed random variables**
- \blacksquare Independently distributed random variables
- \blacksquare (Linear) Dependence: # dec. variables \leftrightarrow # rand. variables

 L Expected value objective function

General problem with discrete finite distributions

Exponential number of scenarios

Assume:

- **Discretely distributed random variables**
- **n** Independently distributed random variables
- \blacksquare (Linear) Dependence: # dec. variables \leftrightarrow # rand. variables

 \implies Exponential number of scenarios

- Randomness occurs in the objective function
	- $L_{\text{Expected value objective function}}$

Exponential number of scenarios

Assume:

- Discretely distributed random variables
- Independently distributed random variables .
- (Linear) Dependency: $#$ dec. variables $leftrightarrow$ $#$ rand. variables

 \implies Exponential number of scenarios

- Randomness occurs in the objective function
	- L Expected value objective function

Exponential number of scenarios

Assume:

- Discretely distributed random variables
- **Independently distributed random variables**
- (Linear) Dependency: $#$ dec. variables $leftrightarrow$ $#$ rand. variables

 \implies Exponential number of scenarios

Example

 \blacksquare n decision variables

- Randomness occurs in the objective function
	- L Expected value objective function

Exponential number of scenarios

Assume:

- Discretely distributed random variables
- **Independently distributed random variables**
- (Linear) Dependency: $#$ dec. variables $leftrightarrow$ $#$ rand. variables

 \implies Exponential number of scenarios

Example

- \blacksquare n decision variables
- \blacksquare n random variables

- Randomness occurs in the objective function
	- L Expected value objective function

Exponential number of scenarios

Assume:

- Discretely distributed random variables
- **Independently distributed random variables**
- (Linear) Dependency: $\#$ dec. variables \leftrightarrow $\#$ rand. variables

 \implies Exponential number of scenarios

Example

- \blacksquare n decision variables
- \blacksquare n random variables
- 2 possible outcomes for each random variable (e.g. Bernoulli distribution)

- Randomness occurs in the objective function
	- L Expected value objective function

Exponential number of scenarios

Assume:

- Discretely distributed random variables
- **Independently distributed random variables**
- (Linear) Dependency: $\#$ dec. variables \leftrightarrow $\#$ rand. variables

 \implies Exponential number of scenarios

Example

- \blacksquare n decision variables
- \blacksquare n random variables
- 2 possible outcomes for each random variable (e.g. Bernoulli distribution)

- Randomness occurs in the objective function
	- L Expected value objective function

Exponential number of scenarios

Assume:

- Discretely distributed random variables
- **Independently distributed random variables**
- **E** (Linear) Dependency: # dec. variables \leftrightarrow # rand. variables

 \implies Exponential number of scenarios

Example

- \blacksquare n decision variables
- \blacksquare n random variables
- 2 possible outcomes for each random variable (e.g. Bernoulli distribution)

Independent random variables $\Rightarrow 2^n$ scenarios

 L Expected value objective function

Discrete Finite Distribution

$$
\text{s.t.} \quad g(x) \leq 0
$$

 $\chi \in \mathbb{R}^s$: random vector

Deterministically Reformulated Programming Problem

$$
\min_{x \in X} \sum_{k=1}^{K} p^{k} f(x, \chi^{k})
$$
\ns.t.

\n
$$
g(x) \leq 0
$$

 $\chi^1,\ldots,\chi^K\in{\rm I\!R}^s$: scenarios $\mathbb{P}\{\chi=\chi^k\}:=\rho^k$: probabilities

L Probability of shortfall

Outline

1 [Randomness occurs in the objective function](#page-4-0)

[Expected value objective function](#page-11-0)

[Probability of shortfall](#page-55-0)

- **[Minimize Variance](#page-99-0)**
- [Value at risk](#page-118-0)

2 [One more SP example](#page-141-0) **[Machine Scheduling](#page-142-0)**

3 [A bit of History](#page-182-0)

 \Box Probability of shortfall

Minimize probability of shortfall

 \Box Probability of shortfall

Minimize probability of shortfall

$$
\min_{x \in X} \quad \mathbb{P}\{f(x, \chi) > T\}
$$
\n
$$
\text{s.t.} \quad g(x) \le 0
$$

 \Box Probability of shortfall

Minimize probability of shortfall

$$
\min_{x \in X} \quad \mathbb{P}\{f(x, \chi) > T\}
$$
\n
$$
\text{s.t.} \quad g(x) \le 0
$$

Examples

Investment strategies

 \Box Probability of shortfall

Minimize probability of shortfall

$$
\min_{x \in X} \quad \mathbb{P}\{f(x, \chi) > T\}
$$
\n
$$
\text{s.t.} \quad g(x) \le 0
$$

Examples

- **Investment strategies**
- Project cost management $(T = 0)$

 \Box Probability of shortfall

Minimize probability of shortfall

$$
\min_{x \in X} \quad \mathbb{P}\{f(x, \chi) > T\}
$$
\n
$$
\text{s.t.} \quad g(x) \le 0
$$

Examples

- **Investment strategies**
- Project cost management $(T = 0)$

L
Probability of shortfall

Minimize probability of shortfall

$$
\min_{x \in X} \quad \mathbb{P}\{f(x, \chi) > T\}
$$
\n
$$
\text{s.t.} \quad g(x) \le 0
$$

Examples

- **Investment strategies**
- Project cost management $(T = 0)$

Probability of "Target" achievement

 \Box Probability of shortfall

Advantages

If probability of shortfall too high actions can be taken.

 \Box Probability of shortfall

Advantages

If probability of shortfall too high actions can be taken.

L
Probability of shortfall

Advantages

If probability of shortfall too high actions can be taken.

Disadvantages

We might still encounter very "bad cases"

Probability of shortfall

Advantages

If probability of shortfall too high actions can be taken.

Disadvantages

- We might still encounter very "bad cases"
- No influence on average cost

Randomness occurs in the objective function

Probability of shortfall

Discrete Finite Distribution

Stochastic Programming Problem

Randomness occurs in the objective function

L
Probability of shortfall

Discrete Finite Distribution

Stochastic Programming Problem

min $\mathbb{P}\{f(x,\chi) > T\}$ s.t. $g(x) \leq 0$

 $\chi \in \mathbb{R}^s$: random vector

Randomness occurs in the objective function

L
Probability of shortfall

Discrete Finite Distribution

Stochastic Programming Problem

min $\mathbb{P}\{f(x,\chi) > T\}$ s.t. $g(x) \leq 0$

 $\chi \in \mathbb{R}^s$: random vector

$$
\chi^1,\ldots,\chi^K\in\mathbb{R}^s\!\!:\;\text{scenarios}
$$

Randomness occurs in the objective function

L
Probability of shortfall

Discrete Finite Distribution

Stochastic Programming Problem

min $\mathbb{P}\{f(x,\chi) > T\}$ s.t. $g(x) \leq 0$

 $\chi \in \mathbb{R}^s$: random vector

 $\chi^1,\ldots,\chi^K\in{\rm I\!R}^s$: scenarios $\mathbb{P}\{\chi=\chi^k\}:=\pmb{\rho}^k\colon$ probabilities

Randomness occurs in the objective function

 \Box Probability of shortfall

Discrete Finite Distribution

Stochastic Programming Problem

min $\mathbb{P}\{f(x,\chi) > T\}$ s.t. $g(x) \leq 0$

 $\chi \in \mathbb{R}^s$: random vector

 $\chi^1,\ldots,\chi^K\in{\rm I\!R}^s$: scenarios $\mathbb{P}\{\chi=\chi^k\}:=\pmb{\rho}^k\colon$ probabilities

Reformulate Problem Deterministically

Randomness occurs in the objective function

Probability of shortfall

Discrete Finite Distribution

Stochastic Programming Problem

min $\mathbb{P}\{f(x,\chi) > T\}$ s.t. $g(x) \leq 0$

 $\chi \in \mathbb{R}^s$: random vector

 $\chi^1,\ldots,\chi^K\in{\rm I\!R}^s$: scenarios $\mathbb{P}\{\chi=\chi^k\}:=\pmb{\rho}^k\colon$ probabilities

Reformulate Problem Deterministically

Basic idea:
\Box Probability of shortfall

Discrete Finite Distribution

Stochastic Programming Problem

min $\mathbb{P}\{f(x,\chi) > T\}$ s.t. $g(x) \leq 0$

 $\chi \in \mathbb{R}^s$: random vector

 $\chi^1,\ldots,\chi^K\in{\rm I\!R}^s$: scenarios $\mathbb{P}\{\chi=\chi^k\}:=\pmb{\rho}^k\colon$ probabilities

Reformulate Problem Deterministically

Basic idea:

"Choose" scenarios with shortfall

Probability of shortfall

Discrete Finite Distribution

Stochastic Programming Problem

min $\mathbb{P}\{f(x,\chi) > T\}$ s.t. $g(x) < 0$

 $\chi \in \mathbb{R}^s$: random vector

 $\chi^1,\ldots,\chi^K\in{\rm I\!R}^s$: scenarios $\mathbb{P}\{\chi=\chi^k\}:=\pmb{\rho}^k\colon$ probabilities

Reformulate Problem Deterministically

Basic idea:

- "Choose" scenarios with shortfall
- Probability that one of these arises minimized

Probability of shortfall

Discrete Finite Distribution

Stochastic Programming Problem

min $\mathbb{P}\{f(x,\chi) > T\}$ s.t. $g(x) < 0$

 $\chi \in \mathbb{R}^s$: random vector

 $\chi^1,\ldots,\chi^K\in{\rm I\!R}^s$: scenarios $\mathbb{P}\{\chi=\chi^k\}:=\pmb{\rho}^k\colon$ probabilities

Reformulate Problem Deterministically

Basic idea:

- "Choose" scenarios with shortfall
- Probability that one of these arises minimized

Probability of shortfall

Discrete Finite Distribution

Stochastic Programming Problem

min $\mathbb{P}\{f(x,\chi) > T\}$ s.t. $g(x) < 0$

 $\chi \in \mathbb{R}^s$: random vector

 $\chi^1,\ldots,\chi^K\in{\rm I\!R}^s$: scenarios $\mathbb{P}\{\chi=\chi^k\}:=\pmb{\rho}^k\colon$ probabilities

Reformulate Problem Deterministically

Basic idea:

- "Choose" scenarios with shortfall
- Probability that one of these arises minimized

Realization:

Probability of shortfall

Discrete Finite Distribution

Stochastic Programming Problem

min $\mathbb{P}\{f(x,\chi) > T\}$ s.t. $g(x) \leq 0$

 $\chi \in \mathbb{R}^s$: random vector

 $\chi^1,\ldots,\chi^K\in{\rm I\!R}^s$: scenarios $\mathbb{P}\{\chi=\chi^k\}:=\pmb{\rho}^k\colon$ probabilities

Reformulate Problem Deterministically

Basic idea:

- "Choose" scenarios with shortfall
- Probability that one of these arises minimized

Realization:

Introduce one binary decision variable z^k per scenario

Randomness occurs in the objective function

Probability of shortfall

Discrete Finite Distribution

Stochastic Programming Problem

min $\mathbb{P}\{f(x,\chi) > T\}$ s.t. $g(x) \leq 0$

 $\chi \in \mathbb{R}^s$: random vector

 $\chi^1,\ldots,\chi^K\in{\rm I\!R}^s$: scenarios $\mathbb{P}\{\chi=\chi^k\}:=\pmb{\rho}^k\colon$ probabilities

Reformulate Problem Deterministically

Basic idea:

- "Choose" scenarios with shortfall
- Probability that one of these arises minimized

Realization:

- Introduce one binary decision variable z^k per scenario
- $z^k=1$: shortfall in scenario k

Randomness occurs in the objective function

Probability of shortfall

Discrete Finite Distribution II

Reformulate Problem Deterministically

Basic idea:

- "Choose" scenarios with shortfall
- **Probability that one of these arises minimized**

Realization:

- Introduce one binary decision variable z^k per scenario
- $z^k = 1$: shortfall in scenario k

Randomness occurs in the objective function

Probability of shortfall

Discrete Finite Distribution II

Reformulate Problem Deterministically

Basic idea:

- "Choose" scenarios with shortfall
- **Probability that one of these arises minimized**

Realization:

- Introduce one binary decision variable z^k per scenario
- $z^k = 1$: shortfall in scenario k

Deterministically reformulated problem

Randomness occurs in the objective function

Probability of shortfall

Discrete Finite Distribution II

Reformulate Problem Deterministically

Basic idea:

- "Choose" scenarios with shortfall
- **Probability that one of these arises minimized**

Realization:

- Introduce one binary decision variable z^k per scenario
- $z^k = 1$: shortfall in scenario k

Deterministically reformulated problem

Randomness occurs in the objective function

Probability of shortfall

Discrete Finite Distribution II

Reformulate Problem Deterministically

Basic idea:

- "Choose" scenarios with shortfall
- **Probability that one of these arises minimized**

Realization:

- Introduce one binary decision variable z^k per scenario
- $z^k = 1$: shortfall in scenario k

Deterministically reformulated problem

min

s.t. $g(x) \leq 0$

$$
x \in X, \quad z^k \in \{0,1\} \quad \forall k = 1,\ldots,K
$$

Stefanie Kosuch [Stochastic Optimization](#page-0-0) 17/40

Randomness occurs in the objective function

Probability of shortfall

Discrete Finite Distribution II

Reformulate Problem Deterministically

Basic idea:

- "Choose" scenarios with shortfall
- **Probability that one of these arises minimized**

Realization:

- Introduce one binary decision variable z^k per scenario
- $z^k = 1$: shortfall in scenario k

Deterministically reformulated problem

min

s.t.
$$
g(x) \le 0
$$

\n $f(x, x^k) \le T + Mz^k$
\n $x \in X, z^k \in \{0, 1\} \quad \forall k = 1, ..., K$

M: some "big" constant

Randomness occurs in the objective function

Probability of shortfall

Discrete Finite Distribution II

Reformulate Problem Deterministically

Basic idea:

- "Choose" scenarios with shortfall
- **Probability that one of these arises minimized**

Realization:

- Introduce one binary decision variable z^k per scenario
- $z^k = 1$: shortfall in scenario k

Deterministically reformulated problem

min

s.t.
$$
g(x) \le 0
$$

\n $f(x, x^k) \le T + Mz^k$
\n $x \in X, z^k \in \{0, 1\} \quad \forall k = 1, ..., K$

M: some "big" constant

Randomness occurs in the objective function

Probability of shortfall

Discrete Finite Distribution II

Reformulate Problem Deterministically

Basic idea:

- "Choose" scenarios with shortfall
- **Probability that one of these arises minimized**

Realization:

- Introduce one binary decision variable z^k per scenario
- $z^k = 1$: shortfall in scenario k

Deterministically reformulated problem

min

s.t.
$$
g(x) \le 0
$$

\n $f(x, x^k) \le T + Mz^k \quad \forall k = 1, ..., K$
\n $x \in X, \quad z^k \in \{0, 1\} \quad \forall k = 1, ..., K$

M: some "big" constant

Probability of shortfall

Discrete Finite Distribution II

Reformulate Problem Deterministically

Basic idea:

- "Choose" scenarios with shortfall
- **Probability that one of these arises minimized**

Realization:

- Introduce one binary decision variable z^k per scenario
- $z^k = 1$: shortfall in scenario k

Deterministically reformulated problem

min
$$
\sum_{k=1}^{K} p^k z^k
$$

s.t. $g(x) \le 0$
 $f(x, x^k) \le T + Mz^k \quad \forall k = 1,..., K$
 $x \in X, \quad z^k \in \{0, 1\} \quad \forall k = 1, ..., K$

M: some "big" constant

Randomness occurs in the objective function

L
Probability of shortfall

Discrete Finite Distribution III

Deterministically reformulated problem

min
$$
\sum_{k=1}^{K} p^{k} z^{k}
$$

s.t. $g(x) \le 0$
 $f(x, \chi^{k}) \le T + Mz^{k} \quad \forall k = 1, ..., K$
 $x \in X, \quad z^{k} \in \{0, 1\} \quad \forall k = 1, ..., K$

M: some "big" constant

L
Randomness occurs in the objective function

L
Probability of shortfall

Discrete Finite Distribution III

Deterministically reformulated problem

min
$$
\sum_{k=1}^{K} p^{k} z^{k}
$$

s.t. $g(x) \le 0$
 $f(x, \chi^{k}) \le T + Mz^{k} \quad \forall k = 1, ..., K$
 $x \in X, \quad z^{k} \in \{0, 1\} \quad \forall k = 1, ..., K$

M: some "big" constant

Problems

Randomness occurs in the objective function

 \Box Probability of shortfall

Discrete Finite Distribution III

Deterministically reformulated problem

min
$$
\sum_{k=1}^{K} p^{k} z^{k}
$$

s.t. $g(x) \le 0$
 $f(x, \chi^{k}) \le T + Mz^{k} \quad \forall k = 1, ..., K$
 $x \in X, \quad z^{k} \in \{0, 1\} \quad \forall k = 1, ..., K$

M: some "big" constant

Problems

Numerical instability due to big M possible

Randomness occurs in the objective function

 \Box Probability of shortfall

Discrete Finite Distribution III

Deterministically reformulated problem

min
$$
\sum_{k=1}^{K} p^{k} z^{k}
$$

s.t. $g(x) \le 0$
 $f(x, \chi^{k}) \le T + Mz^{k} \quad \forall k = 1, ..., K$
 $x \in X, \quad z^{k} \in \{0, 1\} \quad \forall k = 1, ..., K$

M: some "big" constant

Problems

- Numerical instability due to big M possible
- K additional constraints

Randomness occurs in the objective function

 \Box Probability of shortfall

Discrete Finite Distribution III

Deterministically reformulated problem

min
$$
\sum_{k=1}^{K} p^{k} z^{k}
$$

s.t. $g(x) \le 0$
 $f(x, \chi^{k}) \le T + Mz^{k} \quad \forall k = 1, ..., K$
 $x \in X, \quad z^{k} \in \{0, 1\} \quad \forall k = 1, ..., K$

M: some "big" constant

Problems

- Numerical instability due to big M possible
- K additional constraints
- K additional binary decision variables

Randomness occurs in the objective function

 \Box Probability of shortfall

Discrete Finite Distribution III

Deterministically reformulated problem

min
$$
\sum_{k=1}^{K} p^{k} z^{k}
$$

s.t. $g(x) \le 0$
 $f(x, \chi^{k}) \le T + Mz^{k} \quad \forall k = 1, ..., K$
 $x \in X, \quad z^{k} \in \{0, 1\} \quad \forall k = 1, ..., K$

M: some "big" constant

Problems

- Numerical instability due to big M possible
- K additional constraints
- K additional binary decision variables

Randomness occurs in the objective function

Probability of shortfall

Discrete Finite Distribution III

Deterministically reformulated problem

min
$$
\sum_{k=1}^{K} p^{k} z^{k}
$$

s.t. $g(x) \le 0$
 $f(x, \chi^{k}) \le T + Mz^{k} \quad \forall k = 1, ..., K$
 $x \in X, \quad z^{k} \in \{0, 1\} \quad \forall k = 1, ..., K$

M: some "big" constant

Problems

- Numerical instability due to big M possible
- K additional constraints
- K additional binary decision variables
- Deterministic reformulation hard

Randomness occurs in the objective function

Probability of shortfall

f linear / Normal Distribution

Stochastic Programming Problem

L
Randomness occurs in the objective function

Probability of shortfall

f linear / Normal Distribution

Stochastic Programming Problem

$$
\min_{x \in X} \quad \mathbb{P}\{ \chi^T x > T \}
$$
\n
$$
\text{s.t.} \quad g(x) \le 0
$$

L
Randomness occurs in the objective function

L
Probability of shortfall

f linear / Normal Distribution

Stochastic Programming Problem

$$
\min_{x \in X} \quad \mathbb{P}\{ \chi^T x > T \}
$$
\n
$$
\text{s.t.} \quad g(x) \le 0
$$

 $\chi \in \mathbb{R}^n$: random vector with normally distr. entries

Randomness occurs in the objective function

 \Box Probability of shortfall

f linear / Normal Distribution

Stochastic Programming Problem

$$
\min_{x \in X} \quad \mathbb{P}\{ \chi^T x > T \}
$$
\n
$$
\text{s.t.} \quad g(x) \le 0
$$

 $\chi \in \mathbb{R}^n$: random vector with normally distr. entries $\chi \sim \mathcal{N}(\mu, \Sigma)$ Σ: Covariance Matrix of χ

Randomness occurs in the objective function

 \Box Probability of shortfall

f linear / Normal Distribution

Stochastic Programming Problem

$$
\min_{x \in X} \quad \mathbb{P}\{ \chi^T x > T \}
$$
\n
$$
\text{s.t.} \quad g(x) \le 0
$$

 $\chi \in \mathbb{R}^n$: random vector with normally distr. entries $\chi \sim \mathcal{N}(\mu, \Sigma)$ Σ: Covariance Matrix of χ

Deterministically reformulated problem

Randomness occurs in the objective function

Probability of shortfall

f linear / Normal Distribution

Stochastic Programming Problem

$$
\min_{x \in X} \quad \mathbb{P}\{ \chi^T x > T \}
$$
\n
$$
\text{s.t.} \quad g(x) \le 0
$$

 $\chi \in \mathbb{R}^n$: random vector with normally distr. entries $\chi \sim \mathcal{N}(\mu, \Sigma)$ Σ: Covariance Matrix of χ

Deterministically reformulated problem

$$
\max_{x \in X} \quad \frac{T - \mu^T x}{\sqrt{x^T \Sigma x}}
$$

s.t. $g(x) \le 0$

 $x^* \neq 0$

LMinimize Variance

Outline

1 [Randomness occurs in the objective function](#page-4-0)

- **[Expected value objective function](#page-11-0)**
- [Probability of shortfall](#page-55-0)
- **[Minimize Variance](#page-99-0)**
- [Value at risk](#page-118-0)
- 2 [One more SP example](#page-141-0) **[Machine Scheduling](#page-142-0)**

3 [A bit of History](#page-182-0)

Minimize Variance

Minimize variance

Minimize variance

min $Var[f(x, \chi)]$ s.t. $g(x) \leq 0$

Minimize Variance

Minimize variance

min $Var[f(x, \chi)]$ s.t. $g(x) \leq 0$

Advantages:

Minimize variance

min $Var[f(x, \chi)]$ s.t. $g(x) \leq 0$

Advantages:

Outcome more concentrated around mean

Minimize variance

min $Var[f(x, \chi)]$ s.t. $g(x) \leq 0$

Advantages:

- Outcome more concentrated around mean
- **Possibility to reduce risk**

Minimize variance ?

min $Var[f(x, \chi)]$ s.t. $g(x) \leq 0$

Advantages:

- Outcome more concentrated around mean
- **Possibility to reduce risk**

Minimize variance ?

min $Var[f(x, \chi)]$ s.t. $g(x) \leq 0$

Advantages:

- Outcome more concentrated around mean
- **Possibility to reduce risk**

Disadvantages:

Minimize variance ?

min $Var[f(x, \chi)]$ s.t. $g(x) \leq 0$

Advantages:

- Outcome more concentrated around mean
- **Possibility to reduce risk**

Disadvantages:

Makes not much sense without benchmark for expected costs

L Randomness occurs in the objective function

L Minimize Variance

Simple Mean-Variance Models

Minimize convex combination of variance and expectation

Randomness occurs in the objective function

Minimize Variance

Simple Mean-Variance Models

Minimize convex combination of variance and expectation min x∈X λ Var $[f(x, \chi)] + (1 - \lambda) \mathbb{E}[f(x, \chi)]$

s.t. $g(x) \leq 0$

Randomness occurs in the objective function

Minimize Variance

Simple Mean-Variance Models

Minimize convex combination of variance and expectation min x∈X λ Var $[f(x, \chi)] + (1 - \lambda) \mathbb{E}[f(x, \chi)]$ ($\lambda \in (0, 1)$) s.t. $g(x) \leq 0$

Minimize weighted product of variance and expectation

Randomness occurs in the objective function

Minimize Variance

Simple Mean-Variance Models

Minimize convex combination of variance and expectation min $x \in X$ λ Var $[f(x, \chi)] + (1 - \lambda) \mathbb{E}[f(x, \chi)]$ ($\lambda \in (0, 1)$) s.t. $g(x) \leq 0$

Minimize weighted product of variance and expectation min $Var[f(x, \chi)]^{\lambda} \cdot \mathbb{E}[f(x, \chi)]$ s.t. $g(x) \leq 0$

Randomness occurs in the objective function

Minimize Variance

Simple Mean-Variance Models

Minimize convex combination of variance and expectation min $x \in X$ λ Var $[f(x, \chi)] + (1 - \lambda) \mathbb{E}[f(x, \chi)]$ ($\lambda \in (0, 1)$) s.t. $g(x) \leq 0$

Minimize weighted product of variance and expectation min $Var[f(x, \chi)]^{\lambda} \cdot \mathbb{E}[f(x, \chi)]$ $x \in X$ s.t. $g(x) \leq 0$

Minimize variance with expectation threshold

ersity

Randomness occurs in the objective function

Minimize Variance

Simple Mean-Variance Models

Minimize convex combination of variance and expectation min $x \in X$ λ Var $[f(x, \chi)] + (1 - \lambda) \mathbb{E}[f(x, \chi)]$ ($\lambda \in (0, 1)$) s.t. $g(x) \leq 0$

Minimize weighted product of variance and expectation min $Var[f(x, \chi)]^{\lambda} \cdot \mathbb{E}[f(x, \chi)]$ $x \in X$ s.t. $g(x) \leq 0$

Minimize variance with expectation threshold min $Var[f(x, \chi)]$ x∈X s.t. $g(x) \leq 0$ $\mathbb{E}[f(x, \chi)] < \mathcal{T}$

ersity

Randomness occurs in the objective function

Minimize Variance

Problems when variance in objective

Loss of linearity

Randomness occurs in the objective function

L Minimize Variance

Problems when variance in objective

- **Loss of linearity**
- **Loss of convexity**

L Randomness occurs in the objective function

Minimize Variance

Problems when variance in objective

- **Loss of linearity**
- **Loss of convexity**
- Hardness of problem (e.g. quadratic objective)

Randomness occurs in the objective function

L Minimize Variance

Problems when variance in objective

- **Loss of linearity**
- **Loss of convexity**
- Hardness of problem (e.g. quadratic objective)
- \blacksquare Compute variance / Evaluate objective function

L Randomness occurs in the objective function Value at risk

Outline

1 [Randomness occurs in the objective function](#page-4-0)

- **[Expected value objective function](#page-11-0)**
- [Probability of shortfall](#page-55-0)
- **[Minimize Variance](#page-99-0)**
- [Value at risk](#page-118-0)
- 2 [One more SP example](#page-141-0) **[Machine Scheduling](#page-142-0)**

3 [A bit of History](#page-182-0)

Randomness occurs in the objective function

 $L_{\text{Value at risk}}$

Question

What is the probability that my total loss during a fixed time interval does not exceed a certain limit?

What is the probability that my total loss during a fixed time interval does not exceed a certain limit?

Examples

What is the probability that my total loss during a fixed time interval does not exceed a certain limit?

Examples

What is the probability that my stock portfolio will fall in value by more than \$ 100 million in one week?

What is the probability that my total loss during a fixed time interval does not exceed a certain limit?

Examples

- What is the probability that my stock portfolio will fall in value by more than \$100 million in one week?
- If I invest $$ 1$ million today, how much can I loose till tomorrow?

 X : random variable describing the loss over time horizon T

 X : random variable describing the loss over time horizon T Φ_X : Cumulative distribution function of X

 X : random variable describing the loss over time horizon T Φ_X : Cumulative distribution function of X

Value at risk over time horizon T at confidence level α :

 X : random variable describing the loss over time horizon T Φ_X : Cumulative distribution function of X

Value at risk over time horizon T at confidence level α :

 $VAR_{\alpha}(X) = \inf\{c | \Phi_{X}(c) \geq \alpha\}$

 X : random variable describing the loss over time horizon T Φ_X : Cumulative distribution function of X

Value at risk over time horizon T at confidence level α :

$$
VAR_{\alpha}(X) = \inf \{ c | \Phi_X(c) \ge \alpha \}
$$

Interpretation (Philippe Jorion)

 X : random variable describing the loss over time horizon T Φ_X : Cumulative distribution function of X

Value at risk over time horizon T at confidence level α :

$$
VAR_{\alpha}(X) = \inf \{ c | \Phi_X(c) \ge \alpha \}
$$

Interpretation (Philippe Jorion)

"Value at Risk measures the worst expected loss over a given horizon under normal market conditions at a given level of confidence."

Randomness occurs in the objective function Value at risk

Value at Risk in Stochastic Programming

Risk measure

- Risk measure
- **Objective: Minimize value at risk**

- Risk measure
- **Objective: Minimize value at risk**

- Risk measure
- **Objective: Minimize value at risk**

- Risk measure
- **Objective: Minimize value at risk**

Critics

Lack of subadditivity

- Risk measure
- **Objective: Minimize value at risk**

- **Lack of subadditivity**
- **Lack of convexity**

- Risk measure
- **Objective: Minimize value at risk**

- **Lack of subadditivity**
- **Lack of convexity**
- Difficult to compute from scenarios

- Risk measure
- **Objective: Minimize value at risk**

- **Lack of subadditivity**
- **Lack of convexity**
- Difficult to compute from scenarios

- Risk measure
- **Objective: Minimize value at risk**

Critics

- **Lack of subadditivity**
- Lack of convexity
- Difficult to compute from scenarios

Alternatives

Conditional value at risk

Linköping University

- Risk measure
- **Objective: Minimize value at risk**

Critics

- **Lack of subadditivity**
- **Lack of convexity**
- Difficult to compute from scenarios

Alternatives

- Conditional value at risk
- Tail value at risk

- Risk measure
- **Objective: Minimize value at risk**

Critics

- **Lack of subadditivity**
- **Lack of convexity**
- Difficult to compute from scenarios

Alternatives

....

- Conditional value at risk
- **Tail value at risk**

Linköping University

Outline

1 [Randomness occurs in the objective function](#page-4-0)

- **[Expected value objective function](#page-11-0)**
- [Probability of shortfall](#page-55-0)
- **[Minimize Variance](#page-99-0)**
- [Value at risk](#page-118-0)

2 [One more SP example](#page-141-0) **[Machine Scheduling](#page-142-0)**

3 [A bit of History](#page-182-0)

One more SP example Machine Scheduling

Outline

1 [Randomness occurs in the objective function](#page-4-0)

- **[Expected value objective function](#page-11-0)**
- [Probability of shortfall](#page-55-0)
- **[Minimize Variance](#page-99-0)**
- [Value at risk](#page-118-0)

2 [One more SP example](#page-141-0) **[Machine Scheduling](#page-142-0)**

3 [A bit of History](#page-182-0)

One more SP example Machine Scheduling

Deterministic Problem

(Possible) Parameters

Deterministic Problem

(Possible) Parameters

 \blacksquare # of (different) machines / parts

Deterministic Problem

- \blacksquare # of (different) machines / parts
- **Processing times**

Deterministic Problem

- \blacksquare # of (different) machines / parts
- Processing times
- \blacksquare # of jobs to be completed

Deterministic Problem

- \blacksquare # of (different) machines / parts
- **Processing times**
- \blacksquare # of jobs to be completed
- \blacksquare # of employees available

Deterministic Problem

- \blacksquare # of (different) machines / parts
- **Processing times**
- \blacksquare # of jobs to be completed
- \blacksquare # of employees available
- **Due** dates

Deterministic Problem

- \blacksquare # of (different) machines / parts
- **Processing times**
- \blacksquare # of jobs to be completed
- \blacksquare # of employees available
- **Due dates**
- **Precedence relations**

Deterministic Problem

- \blacksquare # of (different) machines / parts
- **Processing times**
- \blacksquare # of jobs to be completed
- \blacksquare # of employees available
- **Due dates**
- **Precedence relations**

Deterministic Problem

(Possible) Parameters

- \blacksquare # of (different) machines / parts
- **Processing times**
- \blacksquare # of jobs to be completed
- \blacksquare # of employees available
- **Due dates**
- **Precedence relations**

(Possible) Objectives

Deterministic Problem

(Possible) Parameters

- \blacksquare # of (different) machines / parts
- Processing times
- \blacksquare # of jobs to be completed
- \blacksquare # of employees available
- **Due dates**
- **Precedence relations**

(Possible) Objectives

Minimize total completition time

Deterministic Problem

(Possible) Parameters

- \blacksquare # of (different) machines / parts
- **Processing times**
- \blacksquare # of jobs to be completed
- \blacksquare # of employees available
- **Due dates**
- **Precedence relations**

(Possible) Objectives

- **Minimize total completition time**
- \blacksquare Maximize $\#$ of completed jobs

Deterministic Problem

(Possible) Parameters

- \blacksquare # of (different) machines / parts
- **Processing times**
- \blacksquare # of jobs to be completed
- \blacksquare # of employees available
- **Due dates**
- **Precedence relations**

(Possible) Objectives

- **Minimize total completition time**
- \blacksquare Maximize $\#$ of completed jobs
- \blacksquare Minimize maximum/sum of tardyness

Deterministic Problem

(Possible) Parameters

- \blacksquare # of (different) machines / parts
- **Processing times**
- \blacksquare # of jobs to be completed
- \blacksquare # of employees available
- **Due dates**
- **Precedence relations**

(Possible) Objectives

- **Minimize total completition time**
- \blacksquare Maximize $\#$ of completed jobs
- \blacksquare Minimize maximum/sum of tardyness
- **Minimize idle times**

[Stochastic Optimization](#page-0-0)

One more SP example Machine Scheduling

Stochastic Problem

Stochastic Problem

(Possible) Uncertain Parameters

 \blacksquare # of (different) available machines

Stochastic Problem

(Possible) Uncertain Parameters

 \blacksquare # of (different) available machines \leftarrow break downs

Stochastic Problem

- \blacksquare # of (different) available machines \leftarrow break downs
- \blacksquare # of (different) parts

Stochastic Problem

- \blacksquare # of (different) available machines \leftarrow break downs
- \blacksquare # of (different) parts \leftarrow costumization

Stochastic Problem

- \blacksquare # of (different) available machines \leftarrow break downs
- \blacksquare # of (different) parts \leftarrow costumization
- **Processing times**

Stochastic Problem

- \blacksquare # of (different) available machines \leftarrow break downs
- \blacksquare # of (different) parts \leftarrow costumization
- Processing times \leftarrow manual operations

Stochastic Problem

- \blacksquare # of (different) available machines \leftarrow break downs
- \blacksquare # of (different) parts \leftarrow costumization
- Processing times \leftarrow manual operations
- \blacksquare # of jobs to be completed

Stochastic Problem

- \blacksquare # of (different) available machines \leftarrow break downs
- \blacksquare # of (different) parts \leftarrow costumization
- Processing times \leftarrow manual operations
- \blacksquare # of jobs to be completed \leftarrow demand

Stochastic Problem

- \blacksquare # of (different) available machines \leftarrow break downs
- \blacksquare # of (different) parts \leftarrow costumization
- Processing times \leftarrow manual operations
- \blacksquare # of jobs to be completed \leftarrow demand
- \blacksquare # of employees available

Stochastic Problem

- \blacksquare # of (different) available machines \leftarrow break downs
- \blacksquare # of (different) parts \leftarrow costumization
- Processing times \leftarrow manual operations
- \blacksquare # of jobs to be completed \leftarrow demand
- \blacksquare # of employees available \leftarrow sickness, vacations

Stochastic Problem

- \blacksquare # of (different) available machines \leftarrow break downs
- \blacksquare # of (different) parts \leftarrow costumization
- Processing times \leftarrow manual operations
- \blacksquare # of jobs to be completed \leftarrow demand
- \blacksquare # of employees available \leftarrow sickness, vacations
- **Due dates**

Stochastic Problem

- \blacksquare # of (different) available machines \leftarrow break downs
- \blacksquare # of (different) parts \leftarrow costumization
- Processing times \leftarrow manual operations
- \blacksquare # of jobs to be completed \leftarrow demand
- \blacksquare # of employees available \leftarrow sickness, vacations
- Due dates \leftarrow uncertainty in processing times

Stochastic Problem

- \blacksquare # of (different) available machines \leftarrow break downs
- \blacksquare # of (different) parts \leftarrow costumization
- Processing times \leftarrow manual operations
- \blacksquare # of jobs to be completed \leftarrow demand
- \blacksquare # of employees available \leftarrow sickness, vacations
- Due dates \leftarrow uncertainty in processing times
- **Precedence relations**

Stochastic Problem

- \blacksquare # of (different) available machines \leftarrow break downs
- \blacksquare # of (different) parts \leftarrow costumization
- Processing times \leftarrow manual operations
- \blacksquare # of jobs to be completed \leftarrow demand
- \blacksquare # of employees available \leftarrow sickness, vacations
- Due dates \leftarrow uncertainty in processing times
- **Precedence relations**

[Stochastic Optimization](#page-0-0)

One more SP example Machine Scheduling

Stochastic Problem

(Possible) Objective

[Stochastic Optimization](#page-0-0)

One more SP example Machine Scheduling

Stochastic Problem

(Possible) Objective

minimize expected...

Stochastic Problem

(Possible) Objective

minimize expected... total processing time

Stochastic Problem

(Possible) Objective

- minimize expected... total processing time
- Given $#$ of jobbs, maximize probability that...

Stochastic Problem

(Possible) Objective

- minimize expected... total processing time
- Given $\#$ of jobbs, maximize probability that... processing "in time"

Stochastic Problem

(Possible) Objective

- minimize expected... total processing time
- Given $\#$ of jobbs, maximize probability that... processing "in time"

Stochastic Settings

Stochastic Problem

(Possible) Objective

- minimize expected... total processing time
- Given $#$ of jobbs, maximize probability that... processing "in time"

Stochastic Settings

Single stage decision

Stochastic Problem

(Possible) Objective

- minimize expected... total processing time
- Given $\#$ of jobbs, maximize probability that... processing "in time"

Stochastic Settings

- Single stage decision
- **Multi-Stage decision**

Stochastic Problem

(Possible) Objective

- minimize expected... total processing time
- Given $\#$ of jobbs, maximize probability that... processing "in time"

Stochastic Settings

- Single stage decision
- \blacksquare Multi-Stage decision \leftarrow Discretization of processing time

One more SP example Machine Scheduling

Stochastic Problem

(Possible) Objective

- minimize expected... total processing time
- Given $\#$ of jobbs, maximize probability that... processing "in time"

Stochastic Settings

- Single stage decision
- \blacksquare Multi-Stage decision \leftarrow Discretization of processing time
- Online Programming

One more SP example Machine Scheduling

Stochastic Problem

(Possible) Objective

- **minimize expected... total processing time**
- Given $\#$ of jobbs, maximize probability that... processing "in time"

Stochastic Settings

- Single stage decision
- Multi-Stage decision \leftarrow Discretization of processing time
- Online Programming \leftarrow New information arrives over time

Outline

1 [Randomness occurs in the objective function](#page-4-0)

- **[Expected value objective function](#page-11-0)**
- [Probability of shortfall](#page-55-0)
- **[Minimize Variance](#page-99-0)**
- [Value at risk](#page-118-0)

2 [One more SP example](#page-141-0) **[Machine Scheduling](#page-142-0)**

3 [A bit of History](#page-182-0)

George Dantzig

Linear programming under uncertainty. (1955)

Management Science 1:197–206

George Dantzig

Linear programming under uncertainty. (1955) Management Science 1:197–206

■ Two-Stage and Simple recourse problems

George Dantzig

Linear programming under uncertainty. (1955) Management Science 1:197–206

- Two-Stage and Simple recourse problems
- Finite number of scenarios

George Dantzig

Linear programming under uncertainty. (1955) Management Science 1:197–206

- Two-Stage and Simple recourse problems
- Finite number of scenarios
- **Deterministic Reformualtion**

George Dantzig

Linear programming under uncertainty. (1955) Management Science 1:197–206

- Two-Stage and Simple recourse problems
- **Finite number of scenarios**
- **Deterministic Reformualtion**
- No use of special structure

畐

Richard Van Slyke and Roger J-B. Wets

L-shaped linear programs with applications to optimal control and stochastic programming. (1969) MSIAM Journal on Applied Mathematics 17(4):638–663, 1969

譶 Richard Van Slyke and Roger J-B. Wets

L-shaped linear programs with applications to optimal control and stochastic programming. (1969) MSIAM Journal on Applied Mathematics 17(4):638–663, 1969

■ Solution method that makes use of special problem structures

譶 Richard Van Slyke and Roger J-B. Wets

L-shaped linear programs with applications to optimal control and stochastic programming. (1969) MSIAM Journal on Applied Mathematics 17(4):638–663, 1969

- Solution method that makes use of special problem structures
- Reduced computing time

On probabilistic constrained programming. (1970)

Proceedings of the Princeton Symposium on Mathematical Programming 113–1383

András Prékopa

A class of stochastic programming decision problems. (1972) Mathematische Operationsforschung und Statistik 3(5):349–354

On probabilistic constrained programming. (1970) Proceedings of the Princeton Symposium on Mathematical

Programming 113–1383

András Prékopa

A class of stochastic programming decision problems. (1972) Mathematische Operationsforschung und Statistik 3(5):349–354

■ Main contributions to understanding of chance-constraint programming

On probabilistic constrained programming. (1970)

Proceedings of the Princeton Symposium on Mathematical Programming 113–1383

András Prékopa

A class of stochastic programming decision problems. (1972) Mathematische Operationsforschung und Statistik 3(5):349–354

■ Main contributions to understanding of chance-constraint programming

Convex cases

On probabilistic constrained programming. (1970)

Proceedings of the Princeton Symposium on Mathematical Programming 113–1383

András Prékopa

A class of stochastic programming decision problems. (1972) Mathematische Operationsforschung und Statistik 3(5):349–354

- Main contributions to understanding of chance-constraint programming
- Convex cases
- **Joint constraints**

Maarten H. van der Vlerk Stochastic Programming with Integer Recourse. (1995) PhD thesis, University of Groningen, The Netherlands

Maarten H. van der Vlerk Stochastic Programming with Integer Recourse. (1995) PhD thesis, University of Groningen, The Netherlands

■ Main contributions to understanding of Integer Programming with Recourse

Maarten H. van der Vlerk Stochastic Programming with Integer Recourse. (1995) PhD thesis, University of Groningen, The Netherlands

- Main contributions to understanding of Integer Programming with Recourse
- with Leen Stougie, Rüdiger Schultz

量

Alexander Shapiro and Tito Homem-de-Mello A simulation-based approach to two-stage stochastic programming with recourse. (1998) Mathematical Programming 81(3):301-325

昴

Alexander Shapiro and Tito Homem-de-Mello A simulation-based approach to two-stage stochastic programming with recourse. (1998) Mathematical Programming 81(3):301-325

Stochastic Programming via Monte Carlo Sampling: Sample Average Approach

螶

Alexander Shapiro and Tito Homem-de-Mello A simulation-based approach to two-stage stochastic programming with recourse. (1998) Mathematical Programming 81(3):301-325

- **Stochastic Programming via Monte Carlo Sampling: Sample** Average Approach
- **Much work on convergence properties**

ā.

Alexander Shapiro and Tito Homem-de-Mello A simulation-based approach to two-stage stochastic programming with recourse. (1998) Mathematical Programming 81(3):301-325

- **Stochastic Programming via Monte Carlo Sampling: Sample** Average Approach
- **Much work on convergence properties**
- Realization: Often good approximations possible with "relatively" few samples

Next lecture

■ Chance-Constrained Programming and related problems

Next lecture

- Chance-Constrained Programming and related problems
- (Simple Recourse Problems)

QUESTIONS?

What about next week in 2 weeks?

