Stochastic Optimization IDA PhD course 2011ht

Stefanie Kosuch

PostDok at TCSLab www.kosuch.eu/stefanie/

2. Lecture: Uncertainties in objective 06. October 2011

- Expected value objective function
- Probability of shortfall
- Minimize Variance
- Value at risk

- Expected value objective function
- Probability of shortfall
- Minimize Variance
- Value at risk

2 One more SP example

Machine Scheduling

- Expected value objective function
- Probability of shortfall
- Minimize Variance
- Value at risk

2 One more SP example

Machine Scheduling

3 A bit of History

Outline

1 Randomness occurs in the objective function

- Expected value objective function
- Probability of shortfall
- Minimize Variance
- Value at risk

One more SP exampleMachine Scheduling

3 A bit of History

$$\min_{x \in X} f(x)$$

s.t. $g(x) \le 0$

$$\begin{array}{ll} \min_{x \in X} & f(x) & \min_{x \in X} & f(x, \chi) \\ \text{s.t.} & g(x) \le 0 & \longrightarrow & \text{s.t.} & g(x, \chi) \le 0 \end{array}$$

$$\begin{array}{ll} \min_{x \in X} & f(x) & \min_{x \in X} & f(x, \chi) \\ \text{s.t.} & g(x) \le 0 & \longrightarrow & \text{s.t.} & g(x) \le 0 \end{array}$$

$$\begin{array}{ll} \min_{x \in X} & f(x) & \min_{x \in X} & f(x) \\ \text{s.t.} & g(x) \le 0 & \longrightarrow & \text{s.t.} & g(x, \chi) \le 0 \end{array}$$

$\mathsf{Deterministic}~\mathsf{Opt}.~\mathsf{Model}\to\mathsf{Stochastic}~\mathsf{Programming}~\mathsf{Model}$

$$\begin{array}{ll} \min_{x \in X} & f(x) & \min_{x \in X} & f(x, \chi) \\ \text{s.t.} & g(x) \le 0 & \longrightarrow & \text{s.t.} & g(x, \chi) \le 0 \end{array}$$

 $\chi \in \Omega \subseteq \mathbb{R}^{s}$: random vector

$\mathsf{Deterministic}\ \mathsf{Opt}.\ \mathsf{Model} \to \mathsf{Stochastic}\ \mathsf{Programming}\ \mathsf{Model}$

$$\begin{array}{ll} \min_{x \in X} & f(x) & \min_{x \in X} & f(x, \chi) \\ \text{s.t.} & g(x) \le 0 & \longrightarrow & \text{s.t.} & g(x, \chi) \le 0 \end{array}$$

 $\chi\in\Omega\subseteq\mathbb{R}^{s}:$ vector with random variable as entries

Randomness occurs in the objective function

Expected value objective function

Outline

1 Randomness occurs in the objective function

Expected value objective function

- Probability of shortfall
- Minimize Variance
- Value at risk

One more SP exampleMachine Scheduling

3 A bit of History

Expected value objective function

Minimize an expected value function

Expected value objective function

Minimize an expected value function

 $\min_{x \in X} \quad \mathbb{E}\left[f(x, \chi)\right] \\ \text{s.t.} \quad g(x) \leq 0$

Expected value objective function

Minimize an expected value function

 $\min_{x \in X} \quad \mathbb{E}\left[f(x, \chi)\right]$ s.t. $g(x) \le 0$

Examples

Expected cost / Expected gain

Expected value objective function

Minimize an expected value function

 $\min_{x \in X} \quad \mathbb{E}\left[f(x, \chi)\right] \\ \text{s.t.} \quad g(x) \le 0$

- Expected cost / Expected gain
- Expected machine working time

Expected value objective function

Minimize an expected value function

 $\min_{x \in X} \quad \mathbb{E}\left[f(x, \chi)\right] \\ \text{s.t.} \quad g(x) \le 0$

- Expected cost / Expected gain
- Expected machine working time
- Expected transportation time

Expected value objective function

Minimize an expected value function

 $\min_{x \in X} \quad \mathbb{E}\left[f(x, \chi)\right] \\ \text{s.t.} \quad g(x) \le 0$

- Expected cost / Expected gain
- Expected machine working time
- Expected transportation time
- Expected customer waiting times

Expected value objective function

Minimize an expected value function

 $\min_{x \in X} \quad \mathbb{E}\left[f(x,\chi)\right] \\ \text{s.t.} \quad g(x) \leq 0$

- Expected cost / Expected gain
- Expected machine working time
- Expected transportation time
- Expected customer waiting times
- Expected damage on target

Expected value objective function

Advantages

Good result "on average"

Expected value objective function

- Good result "on average"
- Objective function can often be reformulated deterministically

Expected value objective function

- Good result "on average"
- Objective function can often be reformulated deterministically
- Convex objective if $f(\cdot, \chi)$ is convex (for all possible χ)

Expected value objective function

- Good result "on average"
- Objective function can often be reformulated deterministically
- Convex objective if $f(\cdot, \chi)$ is convex (for all possible χ)
- Lower bound using Jensen's inequality:

Expected value objective function

- Good result "on average"
- Objective function can often be reformulated deterministically
- Convex objective if $f(\cdot, \chi)$ is convex (for all possible χ)
- Lower bound using Jensen's inequality:

Expected value objective function

Advantages

- Good result "on average"
- Objective function can often be reformulated deterministically
- Convex objective if $f(\cdot, \chi)$ is convex (for all possible χ)
- Lower bound using Jensen's inequality:

Theorem (Jensen, 1906)

Let f be a convex function and X a random variable. Then

 $\mathbb{E}\left[f(X)\right] \geq f(\mathbb{E}\left[X\right])$

Expected value objective function

Advantages

- Good result "on average"
- Objective function can often be reformulated deterministically
- Convex objective if $f(\cdot, \chi)$ is convex (for all possible χ)
- Lower bound using Jensen's inequality:

Theorem (Jensen, 1906)

Let f be a convex function and X a random variable. Then

```
\mathbb{E}\left[f(X)\right] \geq f(\mathbb{E}\left[X\right])
```

Disadvantages

■ We might encounter very "bad cases" ("Risk")

Expected value objective function

Advantages

- Good result "on average"
- Objective function can often be reformulated deterministically
- Convex objective if $f(\cdot, \chi)$ is convex (for all possible χ)
- Lower bound using Jensen's inequality:

Theorem (Jensen, 1906)

Let f be a convex function and X a random variable. Then

```
\mathbb{E}\left[f(X)\right] \geq f(\mathbb{E}\left[X\right])
```

Disadvantages

- We might encounter very "bad cases" ("Risk")
- Expectation can only be computed as multidimensional integral

Randomness occurs in the objective function

Expected value objective function

Linear Programming Problem

Stochastic Programming Problem

Randomness occurs in the objective function

Expected value objective function

Linear Programming Problem

Stochastic Programming Problem

$$\min_{\substack{\substack{\substack{\substack{\substack{\substack{k \in \mathbb{R}^n \\ x \ge 0}}}}} \mathbb{E}\left[c(\chi)^T x\right]$$

s.t. $Ax \le b$

Randomness occurs in the objective function

Expected value objective function

Linear Programming Problem

Stochastic Programming Problem

$$\min_{\substack{\substack{x \in \mathbb{R}^n \\ x \ge 0}} } \mathbb{E}\left[c(\chi)^T x\right]$$
s.t. $Ax \le b$

 $\chi \in \mathbb{R}^{s}$: random vector

Randomness occurs in the objective function

Expected value objective function

Linear Programming Problem

Stochastic Programming Problem

$$\min_{\substack{x \in \mathbb{R}^n \\ x \ge 0}} \mathbb{E} \left[c(\chi) \right]^T x$$
s.t. $Ax \le b$

$$\chi \in \mathbb{R}^{s}$$
: random vector

Randomness occurs in the objective function

Expected value objective function

Linear Programming Problem

Stochastic Programming Problem

$$\min_{\substack{\boldsymbol{x} \in \mathbb{R}^n \\ \boldsymbol{x} \ge 0}} \mathbb{E} \left[\boldsymbol{c}(\boldsymbol{\chi}) \right]^T \boldsymbol{x}$$
s.t. $A\boldsymbol{x} \le \boldsymbol{b}$

 $\chi \in \mathbb{R}^{s}$: random vector

Deterministically Reformulated Programming Problem

ersity

Randomness occurs in the objective function

Expected value objective function

Linear Programming Problem

Stochastic Programming Problem

$$\min_{\substack{x \in \mathbb{R}^n \\ x \ge 0}} \mathbb{E} \left[c(\chi) \right]^T x$$
s.t. $Ax \le b$

 $\chi \in \mathbb{R}^{s}$: random vector

Deterministically Reformulated Programming Problem

$$\min_{\substack{x \in \mathbb{R}^n \\ x \ge 0}} \mu^T x$$

versity

Randomness occurs in the objective function

Expected value objective function

Linear Programming Problem

Stochastic Programming Problem

$$\min_{\substack{x \in \mathbb{R}^n \\ x \ge 0}} \mathbb{E} \left[c(\chi) \right]^T x$$

s.t. $Ax \le b$

 $\chi \in \mathbb{R}^{s}$: random vector

Deterministically Reformulated Programming Problem

$$\min_{\substack{x \in \mathbb{R}^n \\ x \ge 0}} \mu^T x$$

 $\mu \in \mathbb{R}^n$: (deterministic) vector of means

versity

Randomness occurs in the objective function

Expected value objective function

Discrete Finite Distribution

Stochastic Programming Problem

- Randomness occurs in the objective function
 - Expected value objective function

Discrete Finite Distribution

Stochastic Programming Problem		
m ×∈	in X	$\mathbb{E}\left[f(x,\chi)\right]$
s.t		$g(x) \leq 0$
$\chi \in \mathbb{R}^s$: random vector		

- Randomness occurs in the objective function
 - Expected value objective function

Discrete Finite Distribution

Stochastic Programming Problem		
m ×∈	in X	$\mathbb{E}\left[f(x,\chi)\right]$
s.t		$g(x) \leq 0$
$\chi \in \mathbb{R}^s$: random vector		

S

- Randomness occurs in the objective function
 - Expected value objective function

Discrete Finite Distribution

tochastic Programming Prob	olem	
	$\min_{x\in X}$	$\mathbb{E}\left[f(x,\chi)\right]$
	s.t.	$g(x) \leq 0$

 $\boldsymbol{\chi} \in \mathbb{R}^{s}:$ random vector

Deterministically Reformulated Programming Problem

Linköping University

S

- Randomness occurs in the objective function
 - Expected value objective function

Discrete Finite Distribution

tochastic Programming Prob	lem	
	$\min_{x\in X}$	$\mathbb{E}\left[f(x,\chi)\right]$
	s.t.	$g(x) \leq 0$

 $\boldsymbol{\chi} \in \mathbb{R}^{s}:$ random vector

Deterministically Reformulated Programming Problem

$$\chi^1, \ldots, \chi^K \in \mathbb{R}^s$$
: scenarios

S

- Randomness occurs in the objective function
 - Expected value objective function

Discrete Finite Distribution

tochastic Programming Prob	olem	
	$\min_{x\in X}$	$\mathbb{E}\left[f(x,\chi)\right]$
	s.t.	$g(x) \leq 0$

 $\chi \in \mathbb{R}^s$: random vector

Deterministically Reformulated Programming Problem

 $\begin{array}{l} \chi^1,\ldots,\chi^{\sf K}\in\mathbb{R}^s: \text{ scenarios} \\ \mathbb{P}\{\chi=\chi^k\}:={\it p}^k: \text{ probabilities} \end{array}$

Linköping University

- Randomness occurs in the objective function
 - Expected value objective function

Discrete Finite Distribution

Stochastic	Programming	Problem
Stochastic	Programming	Problem

$$\min_{x \in X} \mathbb{E}[f(x, \chi)]$$

s.t. $g(x) \le 0$

 $\boldsymbol{\chi} \in \mathbb{R}^{s}:$ random vector

Deterministically Reformulated Programming Problem

$$\min_{x \in X} \quad \sum_{k=1}^{K} p^{k} f(x, \chi^{k})$$

s.t. $g(x) \leq 0$

 $\begin{array}{l} \chi^1,\ldots,\chi^{\sf K}\in\mathbb{R}^s: \text{ scenarios} \\ \mathbb{P}\{\chi=\chi^k\}:={\it p}^k: \text{ probabilities} \end{array}$

Linköping University

Randomness occurs in the objective function

Expected value objective function

General problem with discrete finite distributions

Randomness occurs in the objective function

Expected value objective function

General problem with discrete finite distributions

Exponential number of scenarios

Expected value objective function

General problem with discrete finite distributions

Exponential number of scenarios

Assume:

Discretely distributed random variables

Expected value objective function

General problem with discrete finite distributions

Exponential number of scenarios

Assume:

- Discretely distributed random variables
- Independently distributed random variables

Expected value objective function

General problem with discrete finite distributions

Exponential number of scenarios

Assume:

- Discretely distributed random variables
- Independently distributed random variables
- (Linear) Dependence: # dec. variables $\leftrightarrow \#$ rand. variables

Expected value objective function

General problem with discrete finite distributions

Exponential number of scenarios

Assume:

- Discretely distributed random variables
- Independently distributed random variables
- (Linear) Dependence: # dec. variables $\leftrightarrow \#$ rand. variables

Expected value objective function

General problem with discrete finite distributions

Exponential number of scenarios

Assume:

- Discretely distributed random variables
- Independently distributed random variables
- (Linear) Dependence: # dec. variables $\leftrightarrow \#$ rand. variables

 \implies Exponential number of scenarios

- Randomness occurs in the objective function
 - Expected value objective function

Exponential number of scenarios

Assume:

- Discretely distributed random variables
- Independently distributed random variables
- (Linear) Dependency: # dec. variables $\leftrightarrow \#$ rand. variables

⇒ Exponential number of scenarios

- Randomness occurs in the objective function
 - Expected value objective function

Exponential number of scenarios

Assume:

- Discretely distributed random variables
- Independently distributed random variables
- (Linear) Dependency: # dec. variables $\leftrightarrow \#$ rand. variables

⇒ Exponential number of scenarios

Example

n decision variables

- Randomness occurs in the objective function
 - Expected value objective function

Exponential number of scenarios

Assume:

- Discretely distributed random variables
- Independently distributed random variables
- (Linear) Dependency: # dec. variables $\leftrightarrow \#$ rand. variables

⇒ Exponential number of scenarios

Example

- n decision variables
- n random variables

- Randomness occurs in the objective function
 - Expected value objective function

Exponential number of scenarios

Assume:

- Discretely distributed random variables
- Independently distributed random variables
- (Linear) Dependency: # dec. variables $\leftrightarrow \#$ rand. variables

⇒ Exponential number of scenarios

Example

- n decision variables
- n random variables
- 2 possible outcomes for each random variable (e.g. Bernoulli distribution)

- Randomness occurs in the objective function
 - Expected value objective function

Exponential number of scenarios

Assume:

- Discretely distributed random variables
- Independently distributed random variables
- (Linear) Dependency: # dec. variables $\leftrightarrow \#$ rand. variables

⇒ Exponential number of scenarios

Example

- n decision variables
- n random variables
- 2 possible outcomes for each random variable (e.g. Bernoulli distribution)

- Randomness occurs in the objective function
 - Expected value objective function

Exponential number of scenarios

Assume:

- Discretely distributed random variables
- Independently distributed random variables
- (Linear) Dependency: # dec. variables $\leftrightarrow \#$ rand. variables

⇒ Exponential number of scenarios

Example

- n decision variables
- n random variables
- 2 possible outcomes for each random variable (e.g. Bernoulli distribution)

```
Independent random variables \Rightarrow 2^n scenarios
```

- Randomness occurs in the objective function
 - Expected value objective function

Discrete Finite Distribution

Stochastic Programming Problem	
--------------------------------	--

 $\min_{x \in X} \quad \mathbb{E}\left[f(x, \chi)\right]$ s.t. $g(x) \leq 0$

 $\boldsymbol{\chi} \in \mathbb{R}^{s}:$ random vector

Deterministically Reformulated Programming Problem

$$\min_{x \in X} \quad \sum_{k=1}^{K} p^{k} f(x, \chi^{k})$$

s.t. $g(x) \leq 0$

 $\begin{array}{l} \chi^1,\ldots,\chi^{\sf K}\in\mathbb{R}^s: \text{ scenarios} \\ \mathbb{P}\{\chi=\chi^k\}:={\it p}^k: \text{ probabilities} \end{array}$

Linköping University

Probability of shortfall

Outline

1 Randomness occurs in the objective function

- Expected value objective function
- Probability of shortfall
- Minimize Variance
- Value at risk
- One more SP exampleMachine Scheduling
- 3 A bit of History

Probability of shortfall

Minimize probability of shortfall

Probability of shortfall

Minimize probability of shortfall

$$\min_{x \in X} \quad \mathbb{P}\{f(x, \chi) > T\}$$

s.t. $g(x) \le 0$

Probability of shortfall

Minimize probability of shortfall

$$\min_{x \in X} \quad \mathbb{P}\{f(x, \chi) > T\}$$

s.t. $g(x) \le 0$

Examples

Investment strategies

Probability of shortfall

Minimize probability of shortfall

$$\min_{x \in X} \quad \mathbb{P}\{f(x, \chi) > T\}$$

s.t. $g(x) \le 0$

Examples

- Investment strategies
- Project cost management (T = 0)

Probability of shortfall

Minimize probability of shortfall

$$\min_{x \in X} \quad \mathbb{P}\{f(x, \chi) > T\}$$

s.t. $g(x) \le 0$

Examples

- Investment strategies
- Project cost management (T = 0)

Probability of shortfall

Minimize probability of shortfall

$$\min_{x \in X} \quad \mathbb{P}\{f(x, \chi) > T\}$$

s.t. $g(x) \le 0$

Examples

- Investment strategies
- Project cost management (T = 0)

Probability of "Target" achievement

Probability of shortfall

Advantages

If probability of shortfall too high actions can be taken.

Probability of shortfall

Advantages

If probability of shortfall too high actions can be taken.

Probability of shortfall

Advantages

If probability of shortfall too high actions can be taken.

Disadvantages

We might still encounter very "bad cases"

Probability of shortfall

Advantages

If probability of shortfall too high actions can be taken.

Disadvantages

- We might still encounter very "bad cases"
- No influence on average cost

Randomness occurs in the objective function

Probability of shortfall

Discrete Finite Distribution

Stochastic Programming Problem

Randomness occurs in the objective function

Probability of shortfall

Discrete Finite Distribution

Stochastic Programming Problem

 $\min_{x \in X} \quad \mathbb{P}\{f(x, \chi) > T\}$ s.t. $g(x) \le 0$

 $\chi \in \mathbb{R}^s$: random vector

Randomness occurs in the objective function

Probability of shortfall

Discrete Finite Distribution

Stochastic Programming Problem

 $\min_{x \in X} \quad \mathbb{P}\{f(x, \chi) > T\}$ s.t. $g(x) \le 0$

 $\boldsymbol{\chi} \in \mathbb{R}^{s}:$ random vector

 $\chi^1, \ldots, \chi^K \in \mathbb{R}^s$: scenarios

Randomness occurs in the objective function

Probability of shortfall

Discrete Finite Distribution

Stochastic Programming Problem

 $\min_{x \in X} \quad \mathbb{P}\{f(x, \chi) > T\}$ s.t. $g(x) \le 0$

 $\boldsymbol{\chi} \in \mathbb{R}^{s}:$ random vector

 $\begin{array}{l} \chi^1,\ldots,\chi^{\sf K}\in\mathbb{R}^s: \text{ scenarios}\\ \mathbb{P}\{\chi=\chi^k\}:={\it p}^k: \text{ probabilities} \end{array}$

Randomness occurs in the objective function

Probability of shortfall

Discrete Finite Distribution

Stochastic Programming Problem

 $\min_{x \in X} \quad \mathbb{P}\{f(x, \chi) > T\}$ s.t. $g(x) \le 0$

 $\boldsymbol{\chi} \in \mathbb{R}^{s}:$ random vector

$$\begin{split} \chi^1,\ldots,\chi^{\sf K}\in\mathbb{R}^s: \text{ scenarios }\\ \mathbb{P}\{\chi=\chi^k\}:=\pmb{p}^k: \text{ probabilities } \end{split}$$

Reformulate Problem Deterministically

Randomness occurs in the objective function

Probability of shortfall

Discrete Finite Distribution

Stochastic Programming Problem

 $\min_{x \in X} \quad \mathbb{P}\{f(x, \chi) > T\}$ s.t. $g(x) \le 0$

 $\boldsymbol{\chi} \in \mathbb{R}^{s}:$ random vector

$$\begin{split} \chi^1,\ldots,\chi^{\sf K}\in\mathbb{R}^s: \text{ scenarios }\\ \mathbb{P}\{\chi=\chi^k\}:=\pmb{p}^k: \text{ probabilities } \end{split}$$

Reformulate Problem Deterministically

Basic idea:
Randomness occurs in the objective function

Probability of shortfall

Discrete Finite Distribution

Stochastic Programming Problem

 $\min_{x \in X} \quad \mathbb{P}\{f(x, \chi) > T\}$ s.t. $g(x) \le 0$

 $\boldsymbol{\chi} \in \mathbb{R}^{s}:$ random vector

 $\begin{array}{l} \chi^1,\ldots,\chi^{k'}\in\mathbb{R}^s: \text{ scenarios}\\ \mathbb{P}\{\chi=\chi^k\}:=p^k: \text{ probabilities} \end{array}$

Reformulate Problem Deterministically

Basic idea:

"Choose" scenarios with shortfall

Randomness occurs in the objective function

Probability of shortfall

Discrete Finite Distribution

Stochastic Programming Problem

 $\min_{x \in X} \quad \mathbb{P}\{f(x, \chi) > T\}$ s.t. $g(x) \le 0$

 $\boldsymbol{\chi} \in \mathbb{R}^{s}:$ random vector

 $\begin{array}{l} \chi^1,\ldots,\chi^{k'}\in\mathbb{R}^s: \text{ scenarios}\\ \mathbb{P}\{\chi=\chi^k\}:=p^k: \text{ probabilities} \end{array}$

Reformulate Problem Deterministically

Basic idea:

- "Choose" scenarios with shortfall
- Probability that one of these arises minimized

Randomness occurs in the objective function

Probability of shortfall

Discrete Finite Distribution

Stochastic Programming Problem

 $\min_{x \in X} \quad \mathbb{P}\{f(x, \chi) > T\}$ s.t. $g(x) \le 0$

 $\boldsymbol{\chi} \in \mathbb{R}^{s}:$ random vector

 $\begin{array}{l} \chi^1,\ldots,\chi^{k'}\in\mathbb{R}^s: \text{ scenarios}\\ \mathbb{P}\{\chi=\chi^k\}:=p^k: \text{ probabilities} \end{array}$

Reformulate Problem Deterministically

Basic idea:

- "Choose" scenarios with shortfall
- Probability that one of these arises minimized

Randomness occurs in the objective function

Probability of shortfall

Discrete Finite Distribution

Stochastic Programming Problem

 $\min_{x \in X} \quad \mathbb{P}\{f(x, \chi) > T\}$ s.t. $g(x) \le 0$

 $\boldsymbol{\chi} \in \mathbb{R}^{s}:$ random vector

$$\begin{split} \chi^1,\ldots,\chi^{\sf K} \in \mathbb{R}^s: \text{ scenarios } \\ \mathbb{P}\{\chi=\chi^k\}:= \textit{p}^k: \text{ probabilities } \end{split}$$

Reformulate Problem Deterministically

Basic idea:

- "Choose" scenarios with shortfall
- Probability that one of these arises minimized

Realization:

Randomness occurs in the objective function

Probability of shortfall

Discrete Finite Distribution

Stochastic Programming Problem

 $\min_{x \in X} \mathbb{P}\{f(x, \chi) > T\}$ s.t. $g(x) \le 0$

 $\boldsymbol{\chi} \in \mathbb{R}^{s}$: random vector

 $\begin{array}{l} \chi^1,\ldots,\chi^{k'}\in\mathbb{R}^s: \text{ scenarios}\\ \mathbb{P}\{\chi=\chi^k\}:=p^k: \text{ probabilities} \end{array}$

Reformulate Problem Deterministically

Basic idea:

- "Choose" scenarios with shortfall
- Probability that one of these arises minimized

Realization:

Introduce one binary decision variable z^k per scenario

- Randomness occurs in the objective function

Probability of shortfall

Discrete Finite Distribution

Stochastic Programming Problem

 $\min_{x \in X} \quad \mathbb{P}\{f(x, \chi) > T\}$ s.t. $g(x) \le 0$

 $\boldsymbol{\chi} \in \mathbb{R}^{s}:$ random vector

 $\begin{array}{l} \chi^1,\ldots,\chi^{k'}\in\mathbb{R}^s: \text{ scenarios}\\ \mathbb{P}\{\chi=\chi^k\}:=p^k: \text{ probabilities} \end{array}$

Reformulate Problem Deterministically

Basic idea:

- "Choose" scenarios with shortfall
- Probability that one of these arises minimized

Realization:

- Introduce one binary decision variable z^k per scenario
- $z^k = 1$: shortfall in scenario k

Probability of shortfall

Discrete Finite Distribution II

Reformulate Problem Deterministically

Basic idea:

- "Choose" scenarios with shortfall
- Probability that one of these arises minimized

Realization:

- Introduce one binary decision variable z^k per scenario
- $z^k = 1$: shortfall in scenario k

Probability of shortfall

Discrete Finite Distribution II

Reformulate Problem Deterministically

Basic idea:

- "Choose" scenarios with shortfall
- Probability that one of these arises minimized

Realization:

- Introduce one binary decision variable z^k per scenario
- $z^k = 1$: shortfall in scenario k

Deterministically reformulated problem

Probability of shortfall

Discrete Finite Distribution II

Reformulate Problem Deterministically

Basic idea:

- "Choose" scenarios with shortfall
- Probability that one of these arises minimized

Realization:

- Introduce one binary decision variable z^k per scenario
- $z^k = 1$: shortfall in scenario k

Deterministically reformulated problem

Probability of shortfall

Discrete Finite Distribution II

Reformulate Problem Deterministically

Basic idea:

- "Choose" scenarios with shortfall
- Probability that one of these arises minimized

Realization:

- Introduce one binary decision variable z^k per scenario
- $z^k = 1$: shortfall in scenario k

Deterministically reformulated problem

min

s.t. $g(x) \leq 0$

$$x \in X, \quad z^k \in \{0,1\} \quad \forall k = 1, \dots, K$$

Stefanie Kosuch Stochastic Optimization

Probability of shortfall

Discrete Finite Distribution II

Reformulate Problem Deterministically

Basic idea:

- "Choose" scenarios with shortfall
- Probability that one of these arises minimized

Realization:

- Introduce one binary decision variable z^k per scenario
- $z^k = 1$: shortfall in scenario k

Deterministically reformulated problem

min

s.t.
$$g(x) \leq 0$$

 $f(x, \chi^k) \leq T + Mz^k$
 $x \in X, \quad z^k \in \{0, 1\} \quad \forall k = 1, \dots, K$

Probability of shortfall

Discrete Finite Distribution II

Reformulate Problem Deterministically

Basic idea:

- "Choose" scenarios with shortfall
- Probability that one of these arises minimized

Realization:

- Introduce one binary decision variable z^k per scenario
- $z^k = 1$: shortfall in scenario k

Deterministically reformulated problem

min

s.t.
$$g(x) \leq 0$$

 $f(x, \chi^k) \leq T + Mz^k$
 $x \in X, \quad z^k \in \{0, 1\} \quad \forall k = 1, \dots, K$

Probability of shortfall

Discrete Finite Distribution II

Reformulate Problem Deterministically

Basic idea:

- "Choose" scenarios with shortfall
- Probability that one of these arises minimized

Realization:

- Introduce one binary decision variable z^k per scenario
- $z^k = 1$: shortfall in scenario k

Deterministically reformulated problem

min

s.t.
$$g(x) \leq 0$$

 $f(x, \chi^k) \leq T + Mz^k \quad \forall k = 1, \dots, K$
 $x \in X, \quad z^k \in \{0, 1\} \quad \forall k = 1, \dots, K$

Probability of shortfall

Discrete Finite Distribution II

Reformulate Problem Deterministically

Basic idea:

- "Choose" scenarios with shortfall
- Probability that one of these arises minimized

Realization:

- Introduce one binary decision variable z^k per scenario
- $z^k = 1$: shortfall in scenario k

Deterministically reformulated problem

$$\begin{array}{ll} \min & \sum_{k=1}^{K} p^{k} z^{k} \\ \text{s.t.} & g(x) \leq 0 \\ & f(x, \chi^{k}) \leq T + M z^{k} \quad \forall k = 1, \dots, K \\ & x \in X, \quad z^{k} \in \{0, 1\} \quad \forall k = 1, \dots, K \end{array}$$

Randomness occurs in the objective function

Probability of shortfall

Discrete Finite Distribution III

Deterministically reformulated problem

$$\begin{array}{ll} \min & \sum_{k=1}^{K} p^{k} z^{k} \\ \text{s.t.} & g(x) \leq 0 \\ & f(x, \chi^{k}) \leq T + M z^{k} \quad \forall k = 1, \dots, K \\ & x \in X, \quad z^{k} \in \{0, 1\} \quad \forall k = 1, \dots, K \end{array}$$

Randomness occurs in the objective function

Probability of shortfall

Discrete Finite Distribution III

Deterministically reformulated problem

$$\begin{array}{ll} \min & \sum_{k=1}^{K} p^{k} z^{k} \\ \text{s.t.} & g(x) \leq 0 \\ & f(x, \chi^{k}) \leq T + M z^{k} \quad \forall k = 1, \dots, K \\ & x \in X, \quad z^{k} \in \{0, 1\} \quad \forall k = 1, \dots, K \end{array}$$

M: some "big" constant

Problems

Randomness occurs in the objective function

Probability of shortfall

Discrete Finite Distribution III

Deterministically reformulated problem

$$\begin{array}{ll} \min & \sum_{k=1}^{K} p^{k} z^{k} \\ \text{s.t.} & g(x) \leq 0 \\ & f(x, \chi^{k}) \leq T + M z^{k} \quad \forall k = 1, \dots, K \\ & x \in X, \quad z^{k} \in \{0, 1\} \quad \forall k = 1, \dots, K \end{array}$$

M: some "big" constant

Problems

• Numerical instability due to big *M* possible

Randomness occurs in the objective function

Probability of shortfall

Discrete Finite Distribution III

Deterministically reformulated problem

$$\begin{array}{ll} \min & \sum_{k=1}^{K} p^{k} z^{k} \\ \text{s.t.} & g(x) \leq 0 \\ & f(x, \chi^{k}) \leq T + M z^{k} \quad \forall k = 1, \dots, K \\ & x \in X, \quad z^{k} \in \{0, 1\} \quad \forall k = 1, \dots, K \end{array}$$

M: some "big" constant

Problems

- Numerical instability due to big M possible
- K additional constraints

Randomness occurs in the objective function

Probability of shortfall

Discrete Finite Distribution III

Deterministically reformulated problem

$$\begin{array}{ll} \min & \sum_{k=1}^{K} p^{k} z^{k} \\ \text{s.t.} & g(x) \leq 0 \\ & f(x, \chi^{k}) \leq T + M z^{k} \quad \forall k = 1, \dots, K \\ & x \in X, \quad z^{k} \in \{0, 1\} \quad \forall k = 1, \dots, K \end{array}$$

M: some "big" constant

Problems

- Numerical instability due to big M possible
- K additional constraints
- K additional binary decision variables

Randomness occurs in the objective function

Probability of shortfall

Discrete Finite Distribution III

Deterministically reformulated problem

$$\begin{array}{ll} \min & \sum_{k=1}^{K} p^{k} z^{k} \\ \text{s.t.} & g(x) \leq 0 \\ & f(x, \chi^{k}) \leq T + M z^{k} \quad \forall k = 1, \dots, K \\ & x \in X, \quad z^{k} \in \{0, 1\} \quad \forall k = 1, \dots, K \end{array}$$

M: some "big" constant

Problems

- Numerical instability due to big M possible
- K additional constraints
- K additional binary decision variables

Randomness occurs in the objective function

Probability of shortfall

Discrete Finite Distribution III

Deterministically reformulated problem

$$\begin{array}{ll} \min & \sum_{k=1}^{K} p^{k} z^{k} \\ \text{s.t.} & g(x) \leq 0 \\ & f(x, \chi^{k}) \leq T + M z^{k} \quad \forall k = 1, \dots, K \\ & x \in X, \quad z^{k} \in \{0, 1\} \quad \forall k = 1, \dots, K \end{array}$$

M: some "big" constant

Problems

- Numerical instability due to big M possible
- K additional constraints
- K additional binary decision variables
- Deterministic reformulation hard

Randomness occurs in the objective function

Probability of shortfall

f linear / Normal Distribution

Stochastic Programming Problem

Randomness occurs in the objective function

Probability of shortfall

f linear / Normal Distribution

Stochastic Programming Problem

$$\min_{x \in X} \quad \mathbb{P}\{\chi^T x > T\}$$

s.t. $g(x) \le 0$

Randomness occurs in the objective function

Probability of shortfall

f linear / Normal Distribution

Stochastic Programming Problem

$$\min_{x \in X} \quad \mathbb{P}\{\chi^T x > T\}$$

s.t. $g(x) \le 0$

 $\boldsymbol{\chi} \in \mathbb{R}^{\textit{n}}\!\!:$ random vector with normally distr. entries

Randomness occurs in the objective function

Probability of shortfall

f linear / Normal Distribution

Stochastic Programming Problem

$$\min_{x \in X} \quad \mathbb{P}\{\chi^T x > T\}$$

s.t. $g(x) \le 0$

 $\chi \in \mathbb{R}^n$: random vector with normally distr. entries $\chi \sim \mathcal{N}(\mu, \Sigma)$ Σ : Covariance Matrix of χ

Randomness occurs in the objective function

Probability of shortfall

f linear / Normal Distribution

Stochastic Programming Problem

$$\min_{x \in X} \quad \mathbb{P}\{\chi^T x > T\}$$

s.t. $g(x) \le 0$

 $\chi \in \mathbb{R}^n$: random vector with normally distr. entries $\chi \sim \mathcal{N}(\mu, \Sigma)$ Σ : Covariance Matrix of χ

Deterministically reformulated problem

Randomness occurs in the objective function

Probability of shortfall

f linear / Normal Distribution

Stochastic Programming Problem

$$\min_{x \in X} \quad \mathbb{P}\{\chi^T x > T\}$$

s.t. $g(x) \le 0$

 $\chi \in \mathbb{R}^n$: random vector with normally distr. entries $\chi \sim \mathcal{N}(\mu, \Sigma)$ Σ : Covariance Matrix of χ

Deterministically reformulated problem

$$\max_{x \in X} \quad \frac{T - \mu^T x}{\sqrt{x^T \Sigma x}}$$

s.t. $g(x) \le 0$

 $x^* \neq 0$

Minimize Variance

Outline

1 Randomness occurs in the objective function

- Expected value objective function
- Probability of shortfall
- Minimize Variance
- Value at risk
- One more SP exampleMachine Scheduling

3 A bit of History

└─ Minimize Variance

Minimize variance

Minimize Variance

Minimize variance

$\min_{\substack{x \in X}} \quad Var[f(x, \chi)]$ s.t. $g(x) \le 0$

Minimize Variance

Minimize variance

$\min_{\substack{x \in X}} \quad Var[f(x, \chi)]$ s.t. $g(x) \le 0$

Advantages:

Minimize Variance

Minimize variance

 $\min_{\substack{x \in X}} \quad Var[f(x, \chi)]$ s.t. $g(x) \le 0$

Advantages:

Outcome more concentrated around mean

Minimize Variance

Minimize variance

 $\min_{\substack{x \in X}} \quad Var[f(x, \chi)]$ s.t. $g(x) \le 0$

Advantages:

- Outcome more concentrated around mean
- Possibility to reduce risk

Minimize Variance

Minimize variance ?

 $\min_{\substack{x \in X}} \quad Var[f(x, \chi)]$ s.t. $g(x) \le 0$

Advantages:

- Outcome more concentrated around mean
- Possibility to reduce risk

Minimize Variance

Minimize variance ?

 $\min_{x \in X} \quad Var[f(x, \chi)]$ s.t. $g(x) \le 0$

Advantages:

- Outcome more concentrated around mean
- Possibility to reduce risk

Disadvantages:

Minimize Variance

Minimize variance ?

 $\min_{x \in X} \quad Var[f(x, \chi)]$ s.t. $g(x) \le 0$

Advantages:

- Outcome more concentrated around mean
- Possibility to reduce risk

Disadvantages:

Makes not much sense without benchmark for expected costs

Randomness occurs in the objective function

Minimize Variance

Simple Mean-Variance Models

Minimize convex combination of variance and expectation

Randomness occurs in the objective function

Minimize Variance

Simple Mean-Variance Models

 $\begin{array}{ll} \mbox{Minimize convex combination of variance and expectation} \\ & \min_{x \in X} \quad \lambda Var\left[f(x,\chi)\right] + (1-\lambda) \mathbb{E}\left[f(x,\chi)\right] \\ & \mbox{s.t.} \quad g(x) \leq 0 \end{array}$

Randomness occurs in the objective function

Minimize Variance

Simple Mean-Variance Models

 $\begin{array}{ll} \mbox{Minimize convex combination of variance and expectation} \\ & \min_{x \in X} & \lambda Var\left[f(x,\chi)\right] + (1-\lambda) \mathbb{E}\left[f(x,\chi)\right] & (\lambda \in (0,1)) \\ & \mbox{s.t.} & g(x) \leq 0 \end{array}$

Minimize weighted product of variance and expectation

Randomness occurs in the objective function

Minimize Variance

Simple Mean-Variance Models

 $\begin{array}{ll} \mbox{Minimize convex combination of variance and expectation} \\ & \min_{x \in X} & \lambda Var\left[f(x,\chi)\right] + (1-\lambda) \mathbb{E}\left[f(x,\chi)\right] & (\lambda \in (0,1)) \\ & \mbox{s.t.} & g(x) \leq 0 \end{array}$

Minimize weighted product of variance and expectation $\min_{x \in X}$ $Var [f(x, \chi)]^{\lambda} \cdot \mathbb{E} [f(x, \chi)]$ s.t. $g(x) \leq 0$

Randomness occurs in the objective function

Minimize Variance

Simple Mean-Variance Models

 $\begin{array}{ll} \mbox{Minimize convex combination of variance and expectation} \\ & \min_{x \in X} & \lambda Var\left[f(x,\chi)\right] + (1-\lambda) \mathbb{E}\left[f(x,\chi)\right] & (\lambda \in (0,1)) \\ & \mbox{s.t.} & g(x) \leq 0 \end{array}$

Minimize weighted product of variance and expectation $\min_{x \in X}$ $Var[f(x, \chi)]^{\lambda} \cdot \mathbb{E}[f(x, \chi)]$ s.t. $g(x) \leq 0$

Minimize variance with expectation threshold

Stefanie Kosuch S

ersity

Randomness occurs in the objective function

Minimize Variance

Simple Mean-Variance Models

 $\begin{array}{ll} \mbox{Minimize convex combination of variance and expectation} \\ & \min_{x \in X} & \lambda Var\left[f(x,\chi)\right] + (1-\lambda) \mathbb{E}\left[f(x,\chi)\right] & (\lambda \in (0,1)) \\ & \mbox{s.t.} & g(x) \leq 0 \end{array}$

 $\begin{array}{ll} \mbox{Minimize weighted product of variance and expectation} \\ & & & \\$

Minimize variance with expectation threshold $\min_{x \in X}$ $Var[f(x, \chi)]$ s.t. $g(x) \leq 0$ $\mathbb{E}[f(x, \chi)] \leq T$

ersity

Minimize Variance

Problems when variance in objective

Loss of linearity

Minimize Variance

Problems when variance in objective

- Loss of linearity
- Loss of convexity

Minimize Variance

Problems when variance in objective

- Loss of linearity
- Loss of convexity
- Hardness of problem (e.g. quadratic objective)

Minimize Variance

Problems when variance in objective

- Loss of linearity
- Loss of convexity
- Hardness of problem (e.g. quadratic objective)
- Compute variance / Evaluate objective function

└─ Value at risk

Outline

1 Randomness occurs in the objective function

- Expected value objective function
- Probability of shortfall
- Minimize Variance
- Value at risk

One more SP exampleMachine Scheduling

3 A bit of History

— Value at risk

Question

└─ Value at risk

Question

What is the probability that my total loss during a fixed time interval does not exceed a certain limit?

└─ Value at risk

Question

What is the probability that my total loss during a fixed time interval does not exceed a certain limit?

Examples

└─ Value at risk

Question

What is the probability that my total loss during a fixed time interval does not exceed a certain limit?

Examples

What is the probability that my stock portfolio will fall in value by more than \$ 100 million in one week?

Question

What is the probability that my total loss during a fixed time interval does not exceed a certain limit?

Examples

- What is the probability that my stock portfolio will fall in value by more than \$ 100 million in one week?
- If I invest \$ 1 million today, how much can I loose till tomorrow?

X: random variable describing the loss over time horizon T

X: random variable describing the loss over time horizon T Φ_X : Cumulative distribution function of X

X: random variable describing the loss over time horizon T Φ_X : Cumulative distribution function of X

Value at risk over time horizon T at confidence level α :

X: random variable describing the loss over time horizon T Φ_X : Cumulative distribution function of X

Value at risk over time horizon T at confidence level α :

 $VAR_{\alpha}(X) = \inf\{c | \Phi_X(c) \ge \alpha\}$

X: random variable describing the loss over time horizon T Φ_X : Cumulative distribution function of X

Value at risk over time horizon T at confidence level α :

$$VAR_{\alpha}(X) = \inf\{c | \Phi_X(c) \ge \alpha\}$$

Interpretation (Philippe Jorion)

X: random variable describing the loss over time horizon $T \Phi_X$: Cumulative distribution function of X

Value at risk over time horizon T at confidence level α :

$$VAR_{\alpha}(X) = \inf\{c | \Phi_X(c) \ge \alpha\}$$

Interpretation (Philippe Jorion)

"Value at Risk measures the worst expected loss over a given horizon under normal market conditions at a given level of confidence."

└─ Randomness occurs in the objective function └─ Value at risk

Value at Risk in Stochastic Programming

Risk measure

Value at Risk in Stochastic Programming

- Risk measure
- Objective: Minimize value at risk

Value at Risk in Stochastic Programming

- Risk measure
- Objective: Minimize value at risk

Value at Risk in Stochastic Programming

- Risk measure
- Objective: Minimize value at risk

Value at Risk in Stochastic Programming

- Risk measure
- Objective: Minimize value at risk

Critics

Lack of subadditivity

Value at Risk in Stochastic Programming

- Risk measure
- Objective: Minimize value at risk

- Lack of subadditivity
- Lack of convexity

Value at Risk in Stochastic Programming

- Risk measure
- Objective: Minimize value at risk

- Lack of subadditivity
- Lack of convexity
- Difficult to compute from scenarios

Value at Risk in Stochastic Programming

- Risk measure
- Objective: Minimize value at risk

- Lack of subadditivity
- Lack of convexity
- Difficult to compute from scenarios

└─ Value at <u>risk</u>

Value at Risk in Stochastic Programming

- Risk measure
- Objective: Minimize value at risk

Critics

- Lack of subadditivity
- Lack of convexity
- Difficult to compute from scenarios

Alternatives

Conditional value at risk

WGS UNT

Linköping University

Value at Risk in Stochastic Programming

- Risk measure
- Objective: Minimize value at risk

Critics

- Lack of subadditivity
- Lack of convexity
- Difficult to compute from scenarios

Alternatives

- Conditional value at risk
- Tail value at risk

WGS UNT

Linköping University

Value at Risk in Stochastic Programming

- Risk measure
- Objective: Minimize value at risk

Critics

- Lack of subadditivity
- Lack of convexity
- Difficult to compute from scenarios

Alternatives

...

- Conditional value at risk
- Tail value at risk

WGS UNT

Linköping University

Outline

1 Randomness occurs in the objective function

- Expected value objective function
- Probability of shortfall
- Minimize Variance
- Value at risk

2 One more SP exampleMachine Scheduling

3 A bit of History

Outline

1 Randomness occurs in the objective function

- Expected value objective function
- Probability of shortfall
- Minimize Variance
- Value at risk

2 One more SP exampleMachine Scheduling

3 A bit of History

One more SP example
Machine Scheduling

Deterministic Problem

(Possible) Parameters

(Possible) Parameters

• # of (different) machines / parts

- # of (different) machines / parts
- Processing times

- # of (different) machines / parts
- Processing times
- # of jobs to be completed

- # of (different) machines / parts
- Processing times
- # of jobs to be completed
- # of employees available

- # of (different) machines / parts
- Processing times
- # of jobs to be completed
- # of employees available
- Due dates

Deterministic Problem

- # of (different) machines / parts
- Processing times
- # of jobs to be completed
- # of employees available
- Due dates
- Precedence relations

Deterministic Problem

- # of (different) machines / parts
- Processing times
- # of jobs to be completed
- # of employees available
- Due dates
- Precedence relations

(Possible) Parameters

- # of (different) machines / parts
- Processing times
- # of jobs to be completed
- # of employees available
- Due dates
- Precedence relations

(Possible) Objectives

(Possible) Parameters

- # of (different) machines / parts
- Processing times
- # of jobs to be completed
- # of employees available
- Due dates
- Precedence relations

(Possible) Objectives

Minimize total completition time

Deterministic Problem

(Possible) Parameters

- # of (different) machines / parts
- Processing times
- # of jobs to be completed
- # of employees available
- Due dates
- Precedence relations

(Possible) Objectives

- Minimize total completition time
- Maximize # of completed jobs

ersity

Deterministic Problem

(Possible) Parameters

- # of (different) machines / parts
- Processing times
- # of jobs to be completed
- # of employees available
- Due dates
- Precedence relations

(Possible) Objectives

- Minimize total completition time
- Maximize # of completed jobs
- Minimize maximum/sum of tardyness

ersity

Deterministic Problem

(Possible) Parameters

- # of (different) machines / parts
- Processing times
- # of jobs to be completed
- # of employees available
- Due dates
- Precedence relations

(Possible) Objectives

- Minimize total completition time
- Maximize # of completed jobs
- Minimize maximum/sum of tardyness
- Minimize idle times

ersity

(Possible) Uncertain Parameters

of (different) available machines

(Possible) Uncertain Parameters

• # of (different) available machines \leftarrow break downs

- # of (different) available machines \leftarrow break downs
- # of (different) parts

- # of (different) available machines \leftarrow break downs
- # of (different) parts \leftarrow costumization

- # of (different) available machines \leftarrow break downs
- # of (different) parts \leftarrow costumization
- Processing times

- # of (different) available machines \leftarrow break downs
- # of (different) parts \leftarrow costumization
- Processing times \leftarrow manual operations

- # of (different) available machines \leftarrow break downs
- # of (different) parts \leftarrow costumization
- Processing times ← manual operations
- # of jobs to be completed

- # of (different) available machines \leftarrow break downs
- # of (different) parts \leftarrow costumization
- Processing times ← manual operations
- # of jobs to be completed \leftarrow demand

- # of (different) available machines \leftarrow break downs
- # of (different) parts \leftarrow costumization
- Processing times ← manual operations
- # of jobs to be completed \leftarrow demand
- # of employees available

- # of (different) available machines \leftarrow break downs
- # of (different) parts \leftarrow costumization
- Processing times ← manual operations
- # of jobs to be completed \leftarrow demand
- # of employees available \leftarrow sickness, vacations

- # of (different) available machines \leftarrow break downs
- # of (different) parts \leftarrow costumization
- Processing times ← manual operations
- # of jobs to be completed \leftarrow demand
- # of employees available \leftarrow sickness, vacations
- Due dates

- # of (different) available machines \leftarrow break downs
- # of (different) parts \leftarrow costumization
- Processing times ← manual operations
- # of jobs to be completed \leftarrow demand
- # of employees available \leftarrow sickness, vacations
- Due dates \leftarrow uncertainty in processing times

- # of (different) available machines \leftarrow break downs
- # of (different) parts \leftarrow costumization
- Processing times ← manual operations
- # of jobs to be completed \leftarrow demand
- # of employees available \leftarrow sickness, vacations
- Due dates \leftarrow uncertainty in processing times
- Precedence relations

- # of (different) available machines \leftarrow break downs
- # of (different) parts \leftarrow costumization
- Processing times ← manual operations
- # of jobs to be completed \leftarrow demand
- # of employees available \leftarrow sickness, vacations
- Due dates \leftarrow uncertainty in processing times
- Precedence relations

Stochastic Problem

(Possible) Objective

Stochastic Problem

(Possible) Objective

minimize expected...

Stochastic Problem

(Possible) Objective

minimize expected... total processing time

(Possible) Objective

- minimize expected... total processing time
- Given *#* of jobbs, maximize probability that...

(Possible) Objective

- minimize expected... total processing time
- Given # of jobbs, maximize probability that... processing "in time"

(Possible) Objective

- minimize expected... total processing time
- Given # of jobbs, maximize probability that... processing "in time"

Stochastic Settings

(Possible) Objective

- minimize expected... total processing time
- Given # of jobbs, maximize probability that... processing "in time"

Stochastic Settings

Single stage decision

(Possible) Objective

- minimize expected... total processing time
- Given # of jobbs, maximize probability that... processing "in time"

Stochastic Settings

- Single stage decision
- Multi-Stage decision

(Possible) Objective

- minimize expected... total processing time
- Given # of jobbs, maximize probability that... processing "in time"

Stochastic Settings

- Single stage decision
- Multi-Stage decision ← Discretization of processing time

Stochastic Problem

(Possible) Objective

- minimize expected... total processing time
- Given # of jobbs, maximize probability that... processing "in time"

Stochastic Settings

- Single stage decision
- Multi-Stage decision ← Discretization of processing time
- Online Programming

Stochastic Problem

(Possible) Objective

- minimize expected... total processing time
- Given # of jobbs, maximize probability that... processing "in time"

Stochastic Settings

- Single stage decision
- Multi-Stage decision ← Discretization of processing time
- Online Programming \leftarrow New information arrives over time

Outline

1 Randomness occurs in the objective function

- Expected value objective function
- Probability of shortfall
- Minimize Variance
- Value at risk

One more SP exampleMachine Scheduling

3 A bit of History

George Dantzig

Linear programming under uncertainty. (1955)

Management Science 1:197-206

George Dantzig

Linear programming under uncertainty. (1955) *Management Science* 1:197–206

Two-Stage and Simple recourse problems

George Dantzig

Linear programming under uncertainty. (1955) *Management Science* 1:197–206

- Two-Stage and Simple recourse problems
- Finite number of scenarios

George Dantzig

Linear programming under uncertainty. (1955) Management Science 1:197–206

- Two-Stage and Simple recourse problems
- Finite number of scenarios
- Deterministic Reformulation

George Dantzig

Linear programming under uncertainty. (1955) Management Science 1:197–206

- Two-Stage and Simple recourse problems
- Finite number of scenarios
- Deterministic Reformulation
- No use of special structure

Richard Van Slyke and Roger J-B. Wets

L-shaped linear programs with applications to optimal control and stochastic programming. (1969) *MSIAM Journal on Applied Mathematics* 17(4):638–663, 1969

Richard Van Slyke and Roger J-B. Wets

L-shaped linear programs with applications to optimal control and stochastic programming. (1969) *MSIAM Journal on Applied Mathematics* 17(4):638–663, 1969

Solution method that makes use of special problem structures

📓 Richard Van Slyke and Roger J-B. Wets

L-shaped linear programs with applications to optimal control and stochastic programming. (1969) *MSIAM Journal on Applied Mathematics* 17(4):638–663, 1969

- Solution method that makes use of special problem structures
- Reduced computing time

On probabilistic constrained programming. (1970)

Proceedings of the Princeton Symposium on Mathematical Programming 113–1383

András Prékopa

A class of stochastic programming decision problems. (1972) Mathematische Operationsforschung und Statistik 3(5):349–354

On probabilistic constrained programming. (1970)

Proceedings of the Princeton Symposium on Mathematical Programming 113–1383

András Prékopa

A class of stochastic programming decision problems. (1972) Mathematische Operationsforschung und Statistik 3(5):349–354

 Main contributions to understanding of chance-constraint programming

On probabilistic constrained programming. (1970)

Proceedings of the Princeton Symposium on Mathematical Programming 113–1383

András Prékopa

A class of stochastic programming decision problems. (1972) Mathematische Operationsforschung und Statistik 3(5):349–354

 Main contributions to understanding of chance-constraint programming

Convex cases

On probabilistic constrained programming. (1970)

Proceedings of the Princeton Symposium on Mathematical Programming 113–1383

András Prékopa

A class of stochastic programming decision problems. (1972) Mathematische Operationsforschung und Statistik 3(5):349–354

- Main contributions to understanding of chance-constraint programming
- Convex cases
- Joint constraints

Maarten H. van der Vlerk **Stochastic Programming with Integer Recourse.** (1995) *PhD thesis, University of Groningen, The Netherlands*

Maarten H. van der Vlerk Stochastic Programming with Integer Recourse. (1995) PhD thesis, University of Groningen, The Netherlands

Main contributions to understanding of Integer Programming with Recourse

Maarten H. van der Vlerk Stochastic Programming with Integer Recourse. (1995) PhD thesis, University of Groningen, The Netherlands

- Main contributions to understanding of Integer Programming with Recourse
- with Leen Stougie, Rüdiger Schultz

Alexander Shapiro and Tito Homem-de-Mello A simulation-based approach to two-stage stochastic programming with recourse. (1998) Mathematical Programming 81(3):301-325

Alexander Shapiro and Tito Homem-de-Mello A simulation-based approach to two-stage stochastic programming with recourse. (1998) Mathematical Programming 81(3):301-325

 Stochastic Programming via Monte Carlo Sampling: Sample Average Approach

Alexander Shapiro and Tito Homem-de-Mello A simulation-based approach to two-stage stochastic programming with recourse. (1998) Mathematical Programming 81(3):301-325

- Stochastic Programming via Monte Carlo Sampling: Sample Average Approach
- Much work on convergence properties

Alexander Shapiro and Tito Homem-de-Mello A simulation-based approach to two-stage stochastic programming with recourse. (1998) Mathematical Programming 81(3):301-325

- Stochastic Programming via Monte Carlo Sampling: Sample Average Approach
- Much work on convergence properties
- Realization: Often good approximations possible with "relatively" few samples

Next lecture

Chance-Constrained Programming and related problems

- Chance-Constrained Programming and related problems
- (Simple Recourse Problems)

QUESTIONS?

What about next week in 2 weeks?

