
Stochastic Optimization

Stochastic Optimization
IDA PhD course 2011ht

Stefanie Kosuch
PostDok at TCSLab

www.kosuch.eu/stefanie/

2. Lecture: Uncertainties in objective
06. October 2011

Stefanie Kosuch Stochastic Optimization 1/40

www.kosuch.eu/stefanie/


Stochastic Optimization

1 Randomness occurs in the objective function
Expected value objective function
Probability of shortfall
Minimize Variance
Value at risk

2 One more SP example
Machine Scheduling

3 A bit of History

Stefanie Kosuch Stochastic Optimization 2/40



Stochastic Optimization

1 Randomness occurs in the objective function
Expected value objective function
Probability of shortfall
Minimize Variance
Value at risk

2 One more SP example
Machine Scheduling

3 A bit of History

Stefanie Kosuch Stochastic Optimization 2/40



Stochastic Optimization

1 Randomness occurs in the objective function
Expected value objective function
Probability of shortfall
Minimize Variance
Value at risk

2 One more SP example
Machine Scheduling

3 A bit of History

Stefanie Kosuch Stochastic Optimization 2/40



Stochastic Optimization

Randomness occurs in the objective function

Outline

1 Randomness occurs in the objective function
Expected value objective function
Probability of shortfall
Minimize Variance
Value at risk

2 One more SP example
Machine Scheduling

3 A bit of History

Stefanie Kosuch Stochastic Optimization 3/40



Stochastic Optimization

Randomness occurs in the objective function

Deterministic Opt. Model → Stochastic Programming Model

min
x∈X

f (x)

s.t. g(x) ≤ 0

→

min
x∈X

f (x , χ)

s.t. g(x , χ) ≤ 0

χ ∈ Ω ⊆ Rs : random vector
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Expected value objective function
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Stochastic Optimization

Randomness occurs in the objective function

Expected value objective function

Minimize an expected value function

min
x∈X

E [f (x , χ)]

s.t. g(x) ≤ 0

Examples

Expected cost / Expected gain

Expected machine working time

Expected transportation time

Expected customer waiting times

Expected damage on target
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Stochastic Optimization

Randomness occurs in the objective function

Expected value objective function

Advantages

Good result ”on average”

Objective function can often be reformulated deterministically

Convex objective if f (·, χ) is convex (for all possible χ)

Lower bound using Jensen’s inequality:

Theorem (Jensen, 1906)

Let f be a convex function and X a random variable. Then

E [f (X )] ≥ f (E [X ])

Disadvantages

We might encounter very ”bad cases” (”Risk”)

Expectation can only be computed as multidimensional integral
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Stochastic Optimization

Randomness occurs in the objective function

Expected value objective function

Linear Programming Problem

Stochastic Programming Problem

min
x∈Rn

x≥0

E
[
c(χ)T x

]
s.t. Ax ≤ b

χ ∈ Rs : random vector

Deterministically Reformulated Programming Problem

min
x∈Rn

x≥0

µT x

s.t. Ax ≤ b

µ ∈ Rn: (deterministic) vector of means
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Stochastic Optimization

Randomness occurs in the objective function

Expected value objective function

Discrete Finite Distribution

Stochastic Programming Problem

min
x∈X

E [f (x , χ)]

s.t. g(x) ≤ 0

χ ∈ Rs : random vector

Deterministically Reformulated Programming Problem

min
x∈X

K∑
k=1

pk f (x , χk)

s.t. g(x) ≤ 0

χ1, . . . , χK ∈ Rs : scenarios
P{χ = χk} := pk : probabilities

Stefanie Kosuch Stochastic Optimization 9/40



Stochastic Optimization

Randomness occurs in the objective function

Expected value objective function

Discrete Finite Distribution

Stochastic Programming Problem

min
x∈X

E [f (x , χ)]

s.t. g(x) ≤ 0

χ ∈ Rs : random vector

Deterministically Reformulated Programming Problem

min
x∈X

K∑
k=1

pk f (x , χk)

s.t. g(x) ≤ 0

χ1, . . . , χK ∈ Rs : scenarios
P{χ = χk} := pk : probabilities

Stefanie Kosuch Stochastic Optimization 9/40



Stochastic Optimization

Randomness occurs in the objective function

Expected value objective function

Discrete Finite Distribution

Stochastic Programming Problem

min
x∈X

E [f (x , χ)]

s.t. g(x) ≤ 0

χ ∈ Rs : random vector

Deterministically Reformulated Programming Problem

min
x∈X

K∑
k=1

pk f (x , χk)

s.t. g(x) ≤ 0

χ1, . . . , χK ∈ Rs : scenarios
P{χ = χk} := pk : probabilities

Stefanie Kosuch Stochastic Optimization 9/40



Stochastic Optimization

Randomness occurs in the objective function

Expected value objective function

Discrete Finite Distribution

Stochastic Programming Problem

min
x∈X

E [f (x , χ)]

s.t. g(x) ≤ 0

χ ∈ Rs : random vector

Deterministically Reformulated Programming Problem

min
x∈X

K∑
k=1

pk f (x , χk)

s.t. g(x) ≤ 0

χ1, . . . , χK ∈ Rs : scenarios
P{χ = χk} := pk : probabilities

Stefanie Kosuch Stochastic Optimization 9/40



Stochastic Optimization

Randomness occurs in the objective function

Expected value objective function

Discrete Finite Distribution

Stochastic Programming Problem

min
x∈X

E [f (x , χ)]

s.t. g(x) ≤ 0

χ ∈ Rs : random vector

Deterministically Reformulated Programming Problem

min
x∈X

K∑
k=1

pk f (x , χk)

s.t. g(x) ≤ 0

χ1, . . . , χK ∈ Rs : scenarios

P{χ = χk} := pk : probabilities

Stefanie Kosuch Stochastic Optimization 9/40



Stochastic Optimization

Randomness occurs in the objective function

Expected value objective function

Discrete Finite Distribution

Stochastic Programming Problem

min
x∈X

E [f (x , χ)]

s.t. g(x) ≤ 0

χ ∈ Rs : random vector

Deterministically Reformulated Programming Problem

min
x∈X

K∑
k=1

pk f (x , χk)

s.t. g(x) ≤ 0

χ1, . . . , χK ∈ Rs : scenarios
P{χ = χk} := pk : probabilities

Stefanie Kosuch Stochastic Optimization 9/40



Stochastic Optimization

Randomness occurs in the objective function

Expected value objective function

Discrete Finite Distribution

Stochastic Programming Problem

min
x∈X

E [f (x , χ)]

s.t. g(x) ≤ 0

χ ∈ Rs : random vector

Deterministically Reformulated Programming Problem

min
x∈X

K∑
k=1

pk f (x , χk)

s.t. g(x) ≤ 0

χ1, . . . , χK ∈ Rs : scenarios
P{χ = χk} := pk : probabilities

Stefanie Kosuch Stochastic Optimization 9/40



Stochastic Optimization

Randomness occurs in the objective function

Expected value objective function

General problem with discrete finite distributions

Exponential number of scenarios

Assume:

Discretely distributed random variables

Independently distributed random variables

(Linear) Dependence: # dec. variables ↔ # rand. variables

=⇒ Exponential number of scenarios
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Stochastic Optimization

Randomness occurs in the objective function

Probability of shortfall

Minimize probability of shortfall

min
x∈X

P{f (x , χ) > T}

s.t. g(x) ≤ 0

Examples

Investment strategies

Project cost management (T = 0)

Probability of ”Target” achievement
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Stochastic Optimization

Randomness occurs in the objective function

Probability of shortfall

Advantages

If probability of shortfall too high actions can be taken.

Disadvantages

We might still encounter very ”bad cases”

No influence on average cost
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K additional constraints

K additional binary decision variables

Deterministic reformulation hard
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Probability of shortfall

f linear / Normal Distribution

Stochastic Programming Problem

min
x∈X

P{χT x > T}

s.t. g(x) ≤ 0

χ ∈ Rn: random vector with normally distr. entries
χ ∼ N (µ,Σ)
Σ: Covariance Matrix of χ

Deterministically reformulated problem

max
x∈X

T − µT x√
xTΣx

s.t. g(x) ≤ 0

x∗ 6= 0
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Stochastic Optimization

Randomness occurs in the objective function

Minimize Variance

Outline

1 Randomness occurs in the objective function
Expected value objective function
Probability of shortfall
Minimize Variance
Value at risk

2 One more SP example
Machine Scheduling

3 A bit of History
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Stochastic Optimization

Randomness occurs in the objective function

Minimize Variance

Minimize variance

?

min
x∈X

Var [f (x , χ)]

s.t. g(x) ≤ 0

Advantages:

Outcome more concentrated around mean

Possibility to reduce risk

Disadvantages:

Makes not much sense without benchmark for expected costs
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Stochastic Optimization

Randomness occurs in the objective function

Minimize Variance

Simple Mean-Variance Models

Minimize convex combination of variance and expectation

min
x∈X

λVar [f (x , χ)] + (1− λ)E [f (x , χ)]

(λ ∈ (0, 1) )

s.t. g(x) ≤ 0

Minimize weighted product of variance and expectation

min
x∈X

Var [f (x , χ)]λ · E [f (x , χ)]

s.t. g(x) ≤ 0

Minimize variance with expectation threshold

min
x∈X

Var [f (x , χ)]

s.t. g(x) ≤ 0

E [f (x , χ)] ≤ T
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Stochastic Optimization

Randomness occurs in the objective function

Minimize Variance

Problems when variance in objective

Loss of linearity

Loss of convexity

Hardness of problem (e.g. quadratic objective)

Compute variance / Evaluate objective function
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Stochastic Optimization

Randomness occurs in the objective function

Value at risk

Outline

1 Randomness occurs in the objective function
Expected value objective function
Probability of shortfall
Minimize Variance
Value at risk

2 One more SP example
Machine Scheduling

3 A bit of History
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Stochastic Optimization

Randomness occurs in the objective function

Value at risk

Question

What is the probability that my total loss during a fixed time interval
does not exceed a certain limit?

Examples

What is the probability that my stock portfolio will fall in value by
more than $ 100 million in one week?

If I invest $ 1 million today, how much can I loose till tomorrow?
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Stochastic Optimization

Randomness occurs in the objective function

Value at risk

Definition (Value-at-Risk)

X : random variable describing the loss over time horizon T

ΦX : Cumulative distribution function of X

Value at risk over time horizon T at confidence level α:

VARα(X ) = inf{c |ΦX (c) ≥ α}

Interpretation (Philippe Jorion)

”Value at Risk measures the worst expected loss over a given horizon
under normal market conditions at a given level of confidence.”
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Stochastic Optimization

Randomness occurs in the objective function

Value at risk

Value at Risk in Stochastic Programming

Risk measure

Objective: Minimize value at risk

Critics

Lack of subadditivity

Lack of convexity

Difficult to compute from scenarios

Alternatives

Conditional value at risk

Tail value at risk

...
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Stochastic Optimization

One more SP example

Outline

1 Randomness occurs in the objective function
Expected value objective function
Probability of shortfall
Minimize Variance
Value at risk

2 One more SP example
Machine Scheduling

3 A bit of History
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Stochastic Optimization

One more SP example

Machine Scheduling

Deterministic Problem

(Possible) Parameters

# of (different) machines / parts

Processing times

# of jobs to be completed

# of employees available

Due dates

Precedence relations

(Possible) Objectives

Minimize total completition time

Maximize # of completed jobs

Minimize maximum/sum of tardyness

Minimize idle times
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Stochastic Optimization

One more SP example

Machine Scheduling

Stochastic Problem

(Possible) Uncertain Parameters

# of (different) available machines

← break downs

# of (different) parts

← costumization

Processing times

← manual operations

# of jobs to be completed

← demand

# of employees available

← sickness, vacations

Due dates

← uncertainty in processing times

Precedence relations
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Stochastic Optimization

One more SP example

Machine Scheduling

Stochastic Problem

(Possible) Objective

minimize expected...

total processing time

Given # of jobbs, maximize probability that...

processing ”in time”

Stochastic Settings

Single stage decision

Multi-Stage decision

← Discretization of processing time

Online Programming

← New information arrives over time

Stefanie Kosuch Stochastic Optimization 32/40



Stochastic Optimization

One more SP example

Machine Scheduling

Stochastic Problem

(Possible) Objective

minimize expected...

total processing time

Given # of jobbs, maximize probability that...

processing ”in time”

Stochastic Settings

Single stage decision

Multi-Stage decision

← Discretization of processing time

Online Programming

← New information arrives over time

Stefanie Kosuch Stochastic Optimization 32/40



Stochastic Optimization

One more SP example

Machine Scheduling

Stochastic Problem

(Possible) Objective

minimize expected... total processing time

Given # of jobbs, maximize probability that...

processing ”in time”

Stochastic Settings

Single stage decision

Multi-Stage decision

← Discretization of processing time

Online Programming

← New information arrives over time

Stefanie Kosuch Stochastic Optimization 32/40



Stochastic Optimization

One more SP example

Machine Scheduling

Stochastic Problem

(Possible) Objective

minimize expected... total processing time

Given # of jobbs, maximize probability that...

processing ”in time”

Stochastic Settings

Single stage decision

Multi-Stage decision

← Discretization of processing time

Online Programming

← New information arrives over time

Stefanie Kosuch Stochastic Optimization 32/40



Stochastic Optimization

One more SP example

Machine Scheduling

Stochastic Problem

(Possible) Objective

minimize expected... total processing time

Given # of jobbs, maximize probability that... processing ”in time”

Stochastic Settings

Single stage decision

Multi-Stage decision

← Discretization of processing time

Online Programming

← New information arrives over time

Stefanie Kosuch Stochastic Optimization 32/40



Stochastic Optimization

One more SP example

Machine Scheduling

Stochastic Problem

(Possible) Objective

minimize expected... total processing time

Given # of jobbs, maximize probability that... processing ”in time”

Stochastic Settings

Single stage decision

Multi-Stage decision

← Discretization of processing time

Online Programming

← New information arrives over time

Stefanie Kosuch Stochastic Optimization 32/40



Stochastic Optimization

One more SP example

Machine Scheduling

Stochastic Problem

(Possible) Objective

minimize expected... total processing time

Given # of jobbs, maximize probability that... processing ”in time”

Stochastic Settings

Single stage decision

Multi-Stage decision

← Discretization of processing time

Online Programming

← New information arrives over time

Stefanie Kosuch Stochastic Optimization 32/40



Stochastic Optimization

One more SP example

Machine Scheduling

Stochastic Problem

(Possible) Objective

minimize expected... total processing time

Given # of jobbs, maximize probability that... processing ”in time”

Stochastic Settings

Single stage decision

Multi-Stage decision

← Discretization of processing time

Online Programming

← New information arrives over time

Stefanie Kosuch Stochastic Optimization 32/40



Stochastic Optimization

One more SP example

Machine Scheduling

Stochastic Problem

(Possible) Objective

minimize expected... total processing time

Given # of jobbs, maximize probability that... processing ”in time”

Stochastic Settings

Single stage decision

Multi-Stage decision ← Discretization of processing time

Online Programming

← New information arrives over time

Stefanie Kosuch Stochastic Optimization 32/40



Stochastic Optimization

One more SP example

Machine Scheduling

Stochastic Problem

(Possible) Objective

minimize expected... total processing time

Given # of jobbs, maximize probability that... processing ”in time”

Stochastic Settings

Single stage decision

Multi-Stage decision ← Discretization of processing time

Online Programming

← New information arrives over time

Stefanie Kosuch Stochastic Optimization 32/40



Stochastic Optimization

One more SP example

Machine Scheduling

Stochastic Problem

(Possible) Objective

minimize expected... total processing time

Given # of jobbs, maximize probability that... processing ”in time”

Stochastic Settings

Single stage decision

Multi-Stage decision ← Discretization of processing time

Online Programming ← New information arrives over time

Stefanie Kosuch Stochastic Optimization 32/40



Stochastic Optimization

A bit of History

Outline

1 Randomness occurs in the objective function
Expected value objective function
Probability of shortfall
Minimize Variance
Value at risk

2 One more SP example
Machine Scheduling

3 A bit of History

Stefanie Kosuch Stochastic Optimization 33/40



Stochastic Optimization

A bit of History

The beginning

George Dantzig
Linear programming under uncertainty. (1955)
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Finite number of scenarios
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On probabilistic constrained programming. (1970)
Proceedings of the Princeton Symposium on Mathematical
Programming 113–1383

András Prékopa
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Stochastic Optimization

Next lecture

Next lecture

Chance-Constrained Programming and related problems

(Simple Recourse Problems)
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Stochastic Optimization

Next lecture

QUESTIONS?

What about next week in 2 weeks?
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